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ABSTRACT

In the world today, there is an increase in the ownership of domestic firearms. This has led to a need to
be able to detect the dangerous event of a gunshot not just in military areas but in civil areas such as
schools, campuses, hospitals amongst others. The current means of detection of this dangerous event
today is with the use of Closed-Circuit Television (CCTV) and drone cameras which might not be
completely effective in some circumstances. This means that in certain situations we would need to be
able to detect, localize and classify gunshots using an automatic acoustic sensor. This would involve a lot
of components that would be used together for the effective detection, and classification of the gunshot.
Once an acoustic event is detected, the algorithm starts to extract features based on Mel Frequency
Transformation as well as some modified versions of this transformation and some multi-label
classification algorithms to confirm if the event was indeed a gunshot fired at a specific distance that can
be detected. This is the basic logic of what happens within the acoustic event sensor as it can receive the
sound of the surrounding environment in real time, tries to detect an acoustic event, extract some
features from this event and using these features classifies it as either a gunshot or not.

The system was designed to work with recorded sound signals where we would be able to detect the
interesting acoustic event and classify it. The system has been tested across different firearms with the
intention of being able to detect as well as classify gunshots effectively despite environmental factors and
some background noise. There were some other acoustic events which were considered such as hand
claps, hand slams, door slams, bubble wraps and book slams with similar characteristics to the gunshots.
The algorithm was defined to effectively classify the gunshots from the false alarms.

Keywords: gunshot, acoustic event, sensor, real time, multi-label classification, mel frequency
transformation, background noise, false alarms

ABSTRAKT

V dnesnim svété dochazi k narlstu vlastnictvi domacich stfelnych zbrani. To vedlo k potfebé byt schopen
detekovat nebezpecnou uddlost vystielu nejen ve vojenskych oblastech, ale i v civilnich oblastech, jako
jsou mimo jiné skoly, skolni aredly a nemocnice. Soucasné prostiedky detekce této nebezpecné udalosti
dnes vyuZivaji uzavieny televizni okruh (CCTV) a kamery z dron(, coZz nemusi byt za urcitych okolnosti
zcela ucinné. To znamen3, Ze v urcitych situacich bychom potrebovali byt schopni detekovat, lokalizovat
a klasifikovat vystrely pomoci automatického akustického senzoru. To by zahrnovalo mnoho komponentd,
které by byly spole¢né pouzity pro G¢innou detekci a klasifikaci vystfelu.

Jakmile je akusticka uddlost detekovdna, algoritmus zaéne extrahovat rysy zaloZzené na Melové frekvenéni
transformaci, jakoZ i na nékterych modifikovanych verzich této transformace a nékterych viceznackovych
klasifikacnich algoritmech, aby potvrdil, zda udalost byla skute¢né vystielem z uréité vzdalenosti, ktery lze
detekovat. To je zakladni logika toho, co se déje v ramci snimace akustickych udalosti, protoZe dokaze
pfijimat zvuky z okolniho prostfedi v redlném ¢&ase, snazi se detekovat akustickou udalost, extrahovat z
této udalosti nékteré rysy a pomoci téchto rysu ji klasifikovat bud' jako vystrel, nebo ne.

Systém byl navrzen tak, aby pracoval s nahranymi zvukovymi signdly, u nichz bychom byli schopni
detekovat zajimavou akustickou udalost a klasifikovat ji. Systém byl testovan na rlznych stfelnych
zbranich se zdamérem, aby byl schopen efektivné detekovat i klasifikovat vystiely navzdory faktordm
prostiedi a ur¢itému Sumu v pozadi. Byly zvazovany i dalsi akustické udalosti, jako je tlesknuti rukou,
bouchnuti rukou, bouchnuti dvermi, zabaleni bubliny a bouchnuti knihou, které maji podobné vlastnosti
jako vystrely. Algoritmus byl definovan tak, aby ucinné klasifikoval vystiely od faleSnych poplach(.

Klicova slova: vystrel, akusticka udalost, senzor, redlny Cas, klasifikace vice znacek, melova frekvencni
transformace, Sum pozadi, falesné poplachy.
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1. INTRODUCTION

There has been a recent increase in the number of public gun attacks which has led to an increase in the
need for some form of protection from these attacks. The current technologies in place to provide some
form of protection is in the form of surveillance technologies such as cameras and drones as well as some
physical protection in the form of security guards in public places such as school campuses, hospitals, and
some residential areas. The problem with these methods is that they have a limited range to which they
can cover and therefore still leaves the danger of sometimes not being able to properly detect if it was a
gunshot or not, sometimes not being able to tell where the sound comes from and sometimes not being
able to tell if it is another dangerous event occurred (other than a gunshot). Therefore, we need to think
about a system that can help detect, extract features, and classify the acoustic event effectively. This is
what brought about the basic logic of acoustic surveillance systems which can help to not just detect
different acoustic events within different environments but in the case of a continuous dangerous event
can precisely track it to its source [6]. The major advantage of the detector is that it doesn’t just detect,
extract features, and classify gunshots but if strategically placed within an area can be used to monitor
other acoustic events such as car crashes, dog barking, glass shattering, human screams amongst other
dangerous events [1, 2].

We have had many of these acoustic surveillance devices implemented and used for military purposes in
the past with the very first attempt to detect any form of acoustic event was in the First World War in
Italy with special ear attachment. We have had some more military acoustic surveillance devices built
such as the PILAR/PEARL and Microflown as well as some commercially used systems such as the
ShotSpotter which involves an array of sensors strategically placed within a space such that it can easily
locate the shooter’s original location when the gunshot was initially fired [1]. The majority of the modern
acoustic event detectors usually use a tetrahedron array of four microphones and have the capability to
classify the gunshot to the caliber used. This tetrahedron shape helps to calculate the azimuth, elevation,
and range of the gunshot. Modern systems also use a bit of artificial intelligence along with some
microcontroller to read the spectrograms of the acoustic signal [18,19].

These detectors usually use numerous methods to properly detect, extract features and classify the
acoustic events. In the case of a gunshot, we can first easily detect this event by the shape of the sound
signal which is produced by the muzzle blast. We have seen numerous methods in the time domain to
properly detect the gunshot based on the basic logic of what a muzzle blast looks like such as Absolute
value method, Median filter, Teager Energy Operator (TEO), Correlation against a template Discrete
Wavelet Transformation (DWT), Continuous Wavelet Transformation (CWT) amongst others [7]. This
helps us to pick out the possibly dangerous acoustic events to take note of and process for further
investigation. We can then take these possible dangerous acoustic events and perform some feature
extraction algorithms such as Linear Prediction Coefficients (LPC), Perceptual Linear Prediction
Coefficients (PLPC), Zero-crossing Rate (ZcR) or Mel-frequency Cepstral Coefficients (MFCC) with these
features used for the classification [1]. Hence, the focus will be on detection, feature extraction and
classification of these acoustic events.

These methods would be studied and some experimented upon. The results we get from working with
these methods would be used to determine the most appropriate method to be used for Acoustic Event
Detectors (AEDs) within both the time and frequency domains which can give us both very accurate
results but would not require too much computational power and costs as well.
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2. GUNSHOT ANALYSIS

The first thing to investigate is the possibility of being able to detect the acoustic event which in our case
would be a gunshot. There are quite a few principles about gunshots, bullets, gun barrels that need to be
understood for proper detection of any gunshot.

2.1. Muzzle Blast

The typical firearm uses a confined explosive charge to propel the bullet out of the gun barrel, this
explosive charge causes acoustic energy coming from the center of the barrel and moves in all directions
but mostly from the center itself. The explosive shock wave and the acoustic energy emanating from the
barrel causes an acoustic pattern which is known as the Muzzle blast. This lasts for about 3 to 5 ms while
propagating through air at the speed of sound (340 m/s) and interacts with numerous physical parameters
such as temperature, humidity amongst others. There is some audio recording device with some
proximity to the gunshot, if the gunshot is really close to the device, then the muzzle blast is usually the
primary acoustical signal considered for proper detection. Otherwise, the recorded signal would be
obscured and interfered by different barriers and obstacles which lead to different reflections and
reverberations on the recorded signal. There are some handguns and rifles which produce some relatively
loud sound for each gunshot fired. Therefore, to prevent this sound being detected by the audio recording
device, we usually have suppressors to reduce the sound on the handguns or rifles used [1,3,4].

L8] T T T T

05 Muzzle blast 1

‘-\“‘a Muzzle blast

04 F reflection 1

Amplitude [-]

T g ,’L“"s"ﬂ«,%«fw*wvﬂ -

) | |

04k -

o 5 1o 15 20 25
t [ms]
Fig 1: Recorded acoustic signal corresponding to a 7.65 mm subsonic short gun gunshot with reflection

[1]

0.6

2.2. Shockwave
There is a case of the bullet moving at supersonic speed which leads to the supersonic acoustical energy
moving outward from the bullet. The acoustical effect from this is known as an acoustical shockwave
which expands in a conical pattern as seen below:
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Fig 2: An acoustic wave of a supersonic bullet [3]

The bullet has an inner angle of 6 referred to as the Mach angle, which is dependent on the Mach
number, M which is derived from the velocity of the bullet, v and the speed of sound, c as follows:

v=2 €Y)
C

1) (2)

gy = aresin (1
m = arcsin| -

We have a typical example of what the recorded shockwave would look like as shown below:

(IR 1
0.6 F T .
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0 10 20 30 40 50 &0 T0
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Fig 3: Recorded acoustic signal corresponding to a 9 mm supersonic short gun gunshot [1]

The acoustic shockwave has a very rapid rise to a positive over maximum pressure and then a very sudden
drop to a negative under minimum pressure which creates a very distinct ‘N’ shape in the detected sound
signal which is because of the shock wave propagating the nonlinear characteristics of air [1]. The period
between the positive over maximum pressure and the negative under minimum pressure is defined as
follows:
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d = bullet diameter,
[ = length of bullet,
¢ = speed of sound,
M = Mach number,
x = perpendicular distance between gun barrel and microphone

The pattern looks as is shown below with the example period being a bit less than 200us:
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Fig 4: Shock wave recording (“N” wave)

We usually have some cases when the speed of the bullet is substantially larger than the speed of sound,
this usually means that the Mach angle is small and the shockwave propagates nearly perpendicularly to
the bullet’s trajectory while in the case that the speed of the bullet is just slightly larger than the speed of
sound, the Mach angle is almost right, and the shockwave propagates nearly parallel to the bullet’s
trajectory. Therefore, in the case that we have a supersonic bullet shot from a gun barrel, due to the fact
of the conversion of the kinetic energy to the acoustical shockwave we can see that the Mach angle would
increase and the speed decreases over time [3, 4].

Typically, the speed of sound increases with the temperature as follows:

T
C= (g 1+m (4)

¢ = speed of sound,
m
co = speed of sound at 0°C = 331 =

T = temperature in degree celsius
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2.3. Mechanical Vibrations
In addition to the muzzle blast and the shockwave, we can usually detect a gunshot through mechanical
vibrations detected by the audio recording device which could include sounds from the trigger, the
hammer mechanism, the ejection of the cartridge, positioning of new ammunition by the manual or
automatic system by the gun. These sounds are obviously much quieter than the muzzle blast and the
shockwave which is why they are usually detected in the case that the rifle or handgun is really close to
the AED.

Slide assembly

{top hali)
\ Rear sight Front sight /
| Slide serrations l
: e

Hammer —s =— Muzzle
Backstrap — 1
Accessory rail
=—— Trigger guard
Trigger
Grip ——=
Magazine release (reverse)
Frontstrap
/ Magazine well \
Receiver frame

(lower half)

Fig 5: The components of a gun [5]

Acoustic vibration could also be picked up by the solid surfaces around the different loud acoustic sounds.
These are usually partially absorbed and partially reflected. The speed of sound is about 5 times faster in
soil than it is in air so there is a short period of time before we can see the surface vibrations and the
corresponding subsequent air sound signal detected by the AED. These are reflections which are usually
based on the path length difference.

Expanding Shock Wave

a_
Microphones

Fig 6: Shock wave ground reflection [3]
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3. GUNSHOT DETECTION

There are numerous methods for gunshot detection that have been used and invented over the years.
These methods are usually implemented in some form of circuit to be used in the AED. Based on different
studies [7, 17, 18], there are some commonly used effective methods used that can effectively detect
dangerous acoustic events. We would be looking at quite a few methods which are based on the different
characteristics of gunshots explained in the previous section can easily detect the dangerous acoustic
event.

3.1.Median Filter Method

We can now investigate the first method that is usually used for gunshot detection which is the Median
Filter method which works on the basic principle of delay chain of taps with specific operations from the
middle tap. The input signal is fed into a n-delay chain of taps with each having a delay of certain time
and the input signal along with the taps are fed into a median filter whose output is subtracted from the
output of the median filter. The number, n must be even so that we can have an odd number of inputs
going into the median filter. For demonstration purposes, | would assume that we have 6 taps and delay
of 1ms [7]. The basic idea of how the median filter works on is:

y(n) = Medan {x(n) — id,} 5)
A,= F.1ms, F,=48kHz

The block diagram of the example case would look as follows:

+ ﬁ\Hurrrmhml COCIEY x&Dmmjm

Estimatar /—.
- & med[e(t)]
I 2 3 ¥4 5 6 7

| Median filter

z(t)

Fig 7: Block diagram of median filter structure [7]

3.2.Teager Energy Operator
We also sometimes apply a Teager Energy Operator on the estimated absolute input which has both
discrete and analog forms of the operator before passing it on to the detection scheme

y(n) = x(n)? —x(n—1).x(n + 1) [digital] (6a)
dx\* d?
y(6) = (d—f) —x(t)-d—tf [analog] (6b)

This method is said to enhance the high energy parts of the signal which helps a lot with impulsive signals. This
signal is then taken in and compared with the running root mean square (RMS) value
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Fig 8: The TEO Detection Block Diagram [7]

3.3. DISCRETE CORRELATION-BASED ALGORITHM
Due to the different acoustical signals that could be gotten from the gunshot analysis, we can easily see
that for detection purposes the use of some form of correlation might be quite useful especially when
trying to detect the muzzle blast or the acoustic shockwave. The RMS helps to tell where the gunshot
could be since we can tell that the higher the root mean square value the more probable a gunshot could
be shot out at that time. This shows some form of correlative pattern event with the input signal itself so
definitely might be able to help when trying to detect gunshots.

The basic idea of the working logic of this correlative method is that we assume that since the gunshot
would be detected with a large muzzle blast if it is close to the recording device, and it would be a small
muzzle blast in the case that it is still a bit far from the recording device. Hence, we would have two
recording devices both at certain distances from the gunshot and we try to compute the correlation
between the two input signals which then actually becomes the output which is passed to go for the
running RMS value calculation as well as the possible detection. This is an important step since the
correlation is a signed operation and we would not be dealing with negative numbers [7].

x(t)
—=| Antialias filter )
Detection

* Analog Reg. ©
R T N
XX NN,

Template

Fig 9: Basic scheme for a discrete correlation-based detection algorithm [7]

The major disadvantage of this detection algorithm is that since it is a correlative based method therefore
it would be easily affected by background and environmental noises since we need the clearly defined
gunshots with as much information as possible from both recording devices [7].

3.4. Sparse Coefficient State Tracking
We also have a simultaneous detection and classification algorithm known as Sparse Coefficient State
Tracking (SCST). This method works by trying to separate the acoustic event from the other non-
interesting events such as environmental noise, background noise amongst others. This involves two
processes which are signal detection to locate the presence of a transient signal of an unknown source
under the assumption that none were present and quiescent detection to find the end point of the
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transient signal by searching for observations where the particularly dominant source is no longer present
under the assumption that there was one present [17].

The times &p and é; are the estimates of the most recently observed quiescent and detection periods,
respectively which for the quantization would be required to do some hypothesis tests. In the case, the
data has been in quiescent period since &, we have:

HO:ZkZWk! éosk <n
Wk, éo Sk Sel (7a)

»)
H 'z, =
1 k {Sép) + Wk, eq < k <n

Also, when a source signal has been present since time & ;, we perform the following tests:

}[fp):zkzslgp)+ Wy, 6, <k <n

2 Wy, e <k <n (7b)
Dz =
0" %k sSSP+ w,,  &,<k<e

where: H, — null hypothesis, f]-fl(p) — alternate hypothesis,
ey — onset time for next unknown quiescent,

e, — onset time for next source period,

S,Ep) — the extant to the unknown time e, under the null hypothesis H,

We would have to implement the hypothesis test on streaming quantized data vectors, provide a test
statistic for signal detection and evaluate the relative likelihood of the hypothesis tests, for this we use a
test statistic given as:

B,(n) = max{0,B,(n— 1) + b,(n)},n = &, & +1,.. (8)
It is initiated by being equivalent to zero and updated by:

In <pr (znlzn-1)

fao(Zn)

In (f’l”(zn)> B,(n—1) =0
fi,(z))"

where f; is the probability distribution of the parameter set A € {AO, Ap}

),Bp(n—l) >0

by(n) = €C))

Since the source is unknown, we use the following test:
meBy(n) =1 (10)
n — detection threshold for any source label
The moment a transient signal is detected, the quiescent detection uses the following test statistic:

T,(n) = max{O, T,(n—1) + tp(n)},n = é,6;+1,.. (11)

It is also initialized by being equivalent to zero and updated by:

fo(Zn) )
t,(n) = In ("—
P flp(znlzn—l) (12)
The absence of any source is defined by:
Ty >y (13)
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where p* = argma;;Bp(n)

y — threshold for quiescent detection and p* is the class label

Sparse ; .
par | p| Quantization _ Log . S!gnal/ g Signal
—»| coding »| likelihood »| quiescent »|  classification
ratio detection
computation

Fig 10: SCST block diagram [17].

3.5.Geometric Wideband Capon Method

Signal start time,
end time and
class label

There is an algorithm which helps with the detection by computing the Angle of Arrival (AoA) of the source
wavefront using recorded data from different microphones in every 1-s snapshot. This method is known
as the Geometric Wideband Capon method. These snapshots are partitioned into K nonoverlapping blocks
of 1024 samples. We apply Fast Fourier Transform (FFT) on each block. We use these blocks to compute

the sample spatial covariance matrix as follows:

() = 5 ) (0) ()

where
Xk (a)j) — the transformed vector for the kth block at narrowband
frequency component w;

This is used to generate the geometrically averaged wideband Capon power spectrum:

J
1

Qs (®) = an(wj,e)R;,}(wj)v(wj,e)

j=1

where v(a)]-, 9) is the array steering vector and
0 is the azimuth angle relative to the microphone array

(14)

(15)

The steering vector assumes the microphone inputs are ordered as: East, South, Center, West and North.
The aggregated power spectrum is searched over the azimuth angle and the angles that maximize this

function are the AoA angles of the detected sources of that 1-s snapshot [17].

Array S.Channel
Data FFT

Compute Spatial
Compute
:;:_':::r ':" 'T:_" Marrew-band | | Geometric Pesk | | DOA
select —_—— Matrices Power Averaging Finding Estimate
Bins Spectra

Fig. 11: Overview of wideband capon method [17].

There have been numerous other attempts to effectively detect acoustic events with optimal capacity
such as with the use of Neural Networks [18] and Bayesian Networks [19]. We have also had the possibility
of detecting the gunshots using Raspberry Pi with a deep learning Convolutional Neural Network
classification algorithm [20]. There are other interesting methods implemented and experimented with
over the years such as the use an array of microphones to locate the acoustic, even source and muzzle
blast, and shock wave patterns to distinguish the gunshot using the Spatial Likelihood Function [21].
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There have been quite several experimental detection algorithms which have been implemented over the
years when it comes to Acoustic Events Detection with numerous advancements even with using ISR
applications [22] as well as having devices which can detect devices using infrared flash of the muzzle
blast and the percussion property of being able to detect from different audio sources [24]. The underlying
principles all remain the same of just being able to detect the muzzle blast property or the shockwave
property as described in the previous section. In this project, a customized detection algorithm based on
some of the concepts from a median filter (use of RMS, Maximum threshold level) and the acoustical
properties of a gunshot was implemented. This was due to the computational capabilities, ease of
implementation and accuracy of the detection algorithm in relation to the others.

4. FEATURE EXTRACTION

Now that we know some dangerous acoustic events detection algorithms, we would now be trying to look
at the different ways we can correctly classify the event into either gunshot or not in our case. The
detection algorithm, if positive, could be a false positive which we would have to find some way to
properly distinguish these false alarms from the roper gunshots

The classification involves both feature extraction and the use of some default classification algorithm.
There were quite a few methods to be considered for the feature extraction as well as the classification
algorithm. We have the MFCC (Mel-frequency Cepstral Coefficient), IMFCC (Inverse Mel-frequency
Cepstral Coefficient), LFCC (Linear Frequency Cepstral Coefficient) and GTCC (Gammatone Cepstral
Coefficient) which would be considered for the feature extraction. We would be looking at both SVM
(Support Vector Machines) and Neural networks as options for the effective classification of each acoustic
event detected.

4.1. Mel Frequency Cepstral Coefficient (MFCC)
The feature extraction algorithms are all based on the concept of a cepstrum. A cepstrum is the
information of the rate of change in spectral bands. We usually get the periodic signals as peaks while
working with them in the frequency domain by converting the input signal in the time domain via Fourier
series. A non-linear rectification function (either log or power function) is applied to the peaks and then
we take the spectrum of these peaks with a cosine function which is basically a Discrete Cosine Function
(DCF) which results in a cepstral.[8]

Pitch is a very important concept in acoustic signals and is usually measured with frequency. Due to the
fact that the human ear doesn’t perceive pitch linearly, we would therefore have to be able to match the
perceived frequency to the human ear frequency and therefore we would need to have a scale which
could help with this matching. This scale is called the Mel Scale. The Mel scale works on the principle
based on the simple fact that we know that humans can perceive the change in lower frequencies than
those of higher frequencies. The Mel scale works such that we have a mapping function as follows:

M(f) = 112510g(1 + %)

(16)
The mapping function is usually derived experimentally with the following parameters:

M(f) — Themel frequency

f — original frequency
This Mel frequency is a psychoacoustical non-linear scale which better represent the changes in the
different pitches of the human ears. Based on this scale, we can then have Mel filter banks which have a
particular number of filters (between 10 and 30) which once converted are summed up together to give
the Mel filter bank.
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Fig 12: A Mel-filter bank containing 10 filters. This filter bank starts at 0 Hz and ends at 8000 Hz [9].

This basically defines the basic skeleton of the MFCC methodology which involves the following:

e Breaking down the input signal to overlapping time frames

e Performing some form of Fourier Transformation to these time frames (typically DFT)

e Convolution with the filter bank to produce filtered signal

e Application of some non-linear rectification function to the filtered signal (typically log10 or
power function)

e Application of some form of Fourier Transformation to the rectified signal (typically DCT) which
gives us the coefficients

Filter
bank

Breaking the signal into

"|I|||||l|‘||l"|||||" overlapping frames

.. Transform
Coefficients °

Fig 13: Flowchart of Mel-Frequency Cepstral Coefficient Feature Extraction.

Fast Fourier
Transform

4.2.Inverse Mel Frequency Cepstral Coefficient and Linear Frequency Cepstral Coefficient
We also have IMFCC and LFCC which work with the exact same methodology as shown in the flowchart
above but the only difference being the filter banks used within the method. The Mel Filter banks as seen
in Fig. 12 tend to have a cluster of filter banks within the lower frequencies but tend to be more spaced
towards the higher frequencies while IMFCC tends to have the opposite with a lot of space for the filters
within the lower frequencies and tends to get more clustered towards the higher frequencies. LFCC tends
to have even spacing between all the filters within the filter banks.
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Fig. 14: The different filter banks for MFCC (top), LFCC (middle) and IMFCC (bottom).[10]

We also work with the concept of Gammatone Cepstral Coefficients which are based on the Mel filters
but instead of triangular filters we use the gammatone function which is based on the human auditory
response. The gammatone function is a linear function that is proportional to the filtering done by the ear
which is basically a product of the gamma distribution and a sinusoidal tone. The gammatone function is
given as follows:

g(t) = at™ e 2™t cos2nft + @) (17)
a — amplitude, b — filter bandwidth in Hz, f — center frequency of carrier in Hz,
@ — phase of the carrier inradians, t — time in seconds

4.3.Gammatone Frequency Cepstral Coefficient (GTCC)
The gammatone filter bank is typically used to simulate the basilar membrane’s movement with respect
to time within the cochlear with the output of each filter corresponding to the frequency response of the
basilar membrane within a single place. The filter bank is normally defined in such a way that the filter
center frequencies are distributed across frequency in proportion to their bandwidth, known as the ERB
scale. The ERB scale is approximately logarithmic, on which the filter center frequencies are equally
spaced. [11]
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Fig 15: Gammatone filter bank [11]
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From the above description, we can tell that there are numerous possibilities for the feature extraction
procedure to be used for gunshot extraction purposes. The ones we would be considering have a similar
skeletal principle and methodology which are applied across all four of them. The summary of the basic

processes used within each possible Frequency Cepstral Coefficient extraction method can be described
in the figure below, Fig 16.
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Fig. 16: The skeleton of the feature extraction algorithms




5. GUNSHOT CLASSIFICATION
Now that we have been able to categorically define the feature extraction methods which are to be
considered in this case, we would start working with a way to take these extracted features and apply
them into some form of classification model which could help us identify whether the acoustic event
detected is a gunshot or not. We would need a very high level of accuracy for all intents and purposes.
Therefore, we would be considering machine learning classification algorithms which should help
produce very accurate results.

The easiest way to look at our problem would be with a two-class approach to the classification. We
would have a certain number of features that we would have gotten from the feature extraction which
would stand as our input data of a certain number of dimensions. Therefore, we would have a form
of separating plane which can help with the classification along the different axis. There are quite a
few possible methods to consider.

5.1.Support Vector Machines
One of the methods that we would consider being a two-class problem would be the Support Vector
Machines (SVM). SVM works on the same principle as perceptron which is the ability to place a linear
separating plane between two different classes of data but also tries to maximize the margin distance
between the separating hyperplanes as well.

q(x) = sign(wx + b) (18)

The basic concepts of linear classification are defined as follows:
Positive Examples

Co

On this side;
dot(x, w)+ b =0

5 Weight vector

o i

X % N T that defines
Megative example the hyperplane
On this side:

Hyperplane perpendicular to w

g‘; H={x:dot(x, w)+b=0}

Fig 17: The basic concepts of linear classification (Perceptron) [25]

dotlx, w) +bh <0

For a two-class linear classification we work with the feature vectors as follows:

wx+b>0whenk =1 (19)
wx+b<0whenk =2

This helps define the basic separating plane which is derived from numerous feature vectors which

comprises of [1, x] with the class known to help train the model to correctly classify data to either
class.

SVM, for atwo-class problem, is a supervised learning method which doesn’t just define the separating
plane but also maximizes the margin between the two hyperplanes as follows:

wx+b=1 (20)
wx+b= -1
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This brings about the Maximum margin problem.

o Q

. -bj'

Fig 18: Image describing the maximum margin separation principle [14]

The feature vectors which have a distance from the separating plane which is about half of the margin
are referred to as support vectors which are usually the closest points to the plane and help define
the margin.

m = 2 minyerd(x) (21)

where m = margin, d = distance of point from separating plane,
x = feature vector, T = training set

We then try to maximize the margin by defining the signed distance of the margin from each point x
which has a defined class, y (which is either 1 or -1) of the decision boundary with gradients (w, b) as
follows:

wx + b
= u provided that y(wx + b) > 0 (22)

This basically leads us to the optimization task of minimizing the maximum double the distance of the
farthest point from the margin given the basic condition that its class is 1 expressed as:

(w*,b*) = I (x'y’)"eiﬁ 2d(x,y) subject toy(wx +b) > 0,Y(x,y) €T (23)
This leads to the margin having a value of:

) . 2 _ 24
m* = M (x_yT)"g 2d(x,y) = ”‘fﬁgm subject to y(wx + b) > 0,V(x,y) €T 24)

We usually find it easier to minimize than to maximize due to the quadratic programming problem, so
we write the expression as:

o1
w*,b") = arg";,fz 3 lwl|? subject to y(wx +b) > 0,¥(x,y) €T (25)
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Fig 19: Image showing the different types of margins that can be gotten from SVM [13]

From the expression above, we can see that we are minimizing the gradients as well as also making
sure it solves a constraint. This leads to a primal problem which we usually solve using the following
expression:

in |1
(w',b) = T ACIWIZ + Y fCoy,w,b) fwhere (26)
(x,y)ET

0ifywx+b)=>1
o, otherwise

fey.w.b) = |

We usually must work with Non-linear SVMs which work means the separating plane would not be a
line. We approach this problem by taking the original dimension and mapping it to some higher-
dimensional feature space where the training set becomes separable using some mapping function.
This brings about the concept of the Kernel which relies on the inner dot product between the vectors
across different dimensions. Each datapoint is mapped into high-dimensional space via some
transformation:

P:x - @(x) 27)
the inner product becomes:
K(xi,x;) = o(x). 0(x)) (28)
with K being the kernel function.
We have numerous possible kernels with the most popular ones being:

Linear kernel — K(xl-,xj) = Xi. Xj
Polynomial kernel of power p — K(xi, xj) = (x;.xj)P
2
Gaussian kernel — K(xi,xj) = e~ lGi=xjl"/20?

Two layer perceptron — K (xi, xj) = tanh (ax;.x; + f)

5.2. Neural Networks
Another classification method that we can consider would be Neural Networks. These work by trying
to replicate the basic function of a neuron in the brain which is being able to identify the different
patterns and relationships between the data given input features and the output. This is usually done
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by using some concepts in Statistics and Computer Science to work with, train, build and effectively
test a neural network.

A
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Fig 20: The basic skeleton of a neural network [15]

Neural networks typically comprise of layers of interconnected nodes which work together to define
patterns within the data. There is usually an input layer, one or more hidden layers and an output
layer which work with each layer having nodes with inputs of weighted sums of some nodes from the
previous layer being passed on to the next layer [15].

Each node is basically a perceptron model which works with the concept of having a two-class output,
y with classes, 1 and -1 given the input, x as follows:

y = sign(wx + b) (29)

Therefore, we have an input layer which consists of all the input features of the data which would be
trained with certain weights to be passed on to the next layer, hidden layers which take inputs from
the previous hidden layer or input layer which will also be trained with those weights as well and an
output layer which take in inputs from the last hidden layer and trains the weights given the final
output.

An affine non-linear function is usually applied to the output at each node before passing it forward
to the next layer. Some of these functions include:
logistic sigmoid function — o(z) =1/1+e7*
tan sigmoid function — 0(z) = e* —e ?/e* + e~
ReLU function — o(z) = max (0, 2)
Leaky ReLU function — a(z) = max(0,z) + min(0,sz) (0 <s < 1)

z

Usually, when working with multi label classification, we use the SoftMax function right after the
output layer to get a one-hot vector.

exp z

[softmax(2)], = K# (30)
=1 exp z;

The networks work with feed forwarding which as described above is just passing the input and taking
weighted sums of the current layer as inputs into the next layer till we get some output. There is also
the possibility of working backwards by trying to reduce the cost function by finding the weights given
some predictive analysis of both inputs and outputs.[16]
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6. COMPUTATION

Now, | begin to describe the parts of the thesis that was implemented in practice. The entire practical
part of the thesis was done in MATLAB. There were quite a few things implemented in the detection,
feature extraction and classification algorithms. We begin to describe our approach to the gunshot
detection and classification problem based on the theoretical concepts studied as well as testing of
these concepts as well.

6.1. Computation of Gunshot Detection

| decided to work with the basic concepts of the acoustical properties of the gunshots such as muzzle
blast, shock waves and supersonic waves as well as taking some inspiration from the median filter
method. Based on the above concepts, | was able to categorically define some proper conditions for
which we should know that a gunshot should have on a time scale. Most of the files were audio files
stored in the .wav format so it was easy to import them into MATLAB and get the sampling frequency,
fs for which would help with the signal processing. We used a continuous moving frame of different
frame lengths (15 ms, 30 ms, 50 ms) of the entire gunshot with the important acoustic information
required. This was done to see if it is possible to get a much better result with more acoustic
information available over time or if the main muzzle blast (or shockwave) of variable length between
3ms and 6ms with a bit more information was just what was needed for proper classification. For each
frame length we had some exact format to it with:

e 50 ms (10 ms before muzzle blast and 40 ms after muzzle blast)

e 30 ms (5 ms before muzzle blast with 25 ms after muzzle blast)

e 15 ms (3 ms before muzzle blast with 12 ms after muzzle blast)

The conditions were as follows:

e The maximum peak within the frame must be greater than the maximum threshold level
(which is based on our knowledge of the environment which the audio was recorded).

e The maximum peak within the frame must be within the first 3 ms of the entire frame which
corresponds to the muzzle blast or shock wave.

e The maximum peak within the frame must be the maximum within the entire frame of about
10ms before the start of the current frame. This was done to prevent a case of interruption of
any gunshot with another gunshot from either farther away or even the reflections from the
surroundings.

e The root mean square (RMS) of the frame after the muzzle blast must be greater than the root
mean square of the entire audio recording. This is to make sure we are not recording a gunshot
so far away from the recording device that we cannot use the information for proper
classification.

%o (31)

Xrms = =
V2
where X, — root mean square value, x, — initial value

e The z-score value of the maximum peak of the frame must be the greater than the maximum
threshold level defined for the environment. The definition of z-score is as follows:

where Z — standard value,
x — observed value,
U —mean of the sample,
o — standard deviation of the sample
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e The z-score value of the maximum peak of the frame must be the maximum z-score value of
double the length of the frame. This is to make sure that we have enough time to read as
much information from the acoustic signal without any interference from another gunshot
and reflection. It also helps to make sure we are not measuring some one-off spiking signal
but an actual high-pitched sound of a gunshot.

The algorithm was as follows:

Reading the necessary information and the y signal of the audio recordings
For each frameiny:
If Max(frame) > Maximum Threshold Level
If Max(frame) == Max(frame(1:3ms))
If Max(frame) > Max(frame(-10ms:0))
If rms(frame(4ms: frame length)) > rms(y)
If z-score(frame) > Maximum Threshold Level
If z-score(frame) > z-score(y(start of frame:2*frame length))

-(Save gunshot information)
-(Move the frame by about 2 times the frame length)

Else:
Move the frame by about 1ms

Using this algorithm, | was able to detect some gunshots of different calibers (9mm, 5.56mm) as well
as properly detect some false alarms (bubble wrap, book slam, door slam, hand slam, hand clap).

Next frame
l Is the amplitude
Moving frames Framejs of larger than the ne
"ll ||I||l I"'l II" —————» specificlengths | maximum threshold
level?
l yes
- Is the RMS of the signal .
no Is the z-score of the yes & yes Is the amplitude no
frame greater than P after the muzzle blast o .
<« within the first
the Maximum greater than the rms of 3ms?
Threshold level? the entire signal? '
yes no
Is the z-score of the
frame greater than the
" & ves Save the
z-score of the frame
and an additional frame frame
length?

Fig. 21: The logic diagram of the detection algorithm used

The detection algorithm was applied across different firearms and false alarms which led to some
frames being picked for such characteristics as seen below:
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Fig 22: Plots showing detected gunshots of certain calibers (9 mm and 5.56 mm)

From the plots above, it is very clear how similar the two signals from the two calibers are on the time-
based signal. We can also clearly see that the false alarms have similar properties to the gunshots
which could pose a problem. Hence the need for proper feature extraction.
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Fig. 23: Samples of False alarms
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6.2.

Computation of MFCC

We implemented the Mel frequency Cepstral Coefficient method to extract the features to be used
for classification. The method involves the following:

Define a moving frame which moves with a particular overlapping frame which would divide
the data into smaller frames for easier processing. In our case, the frame length was for 1024
samples (for 50 ms), 512 samples (for 30 ms) and 256 samples (for 15 ms) along with an
overlapping frame length of about 10 ms.

Apply the hamming window on the different frames and perform the FFT on the convolution.
Using the Fourier transform, get the power spectrum by squaring the absolute value of the
transform.

Derive the mel spectrum by convolution of the filter bank and the power spectrum

Perform the logarithm of the mel spectrum

Apply Discrete Cosine transformation on the logarithm of the mel spectrum

Discard the higher order mel frequency coefficients.

The mel frequency filter bank was constructed in this case to have the same amplitude and have a
geometrically progressive frequency distribution. We used the triangular filter bank because we are
trying to approximate the non-linear response of the human auditory system and map the frequencies
to the mel scale. It also helps because it is relatively easy to implement since we would need lesser
number of coefficients and therefore less computation power.

6.3.

Triangular Filter Bank

Amplitude
Q o
& ] [2)]
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Frequency (Hz) <104
Fig. 24: MFCC Filter bank

Computation of IMFCC

The steps for running the computation of the MFCC except for the filter bank stage. The inverse mel
frequency filter bank basically works by reversing the mel scale. This means we would be more
interested in the higher frequencies and be extracting more features from that range. We would also
be using triangular filter banks for comparable results as well as similar frequency ranges used for the
feature extraction. The inverse mel filter bank tends to work better than mel filter bank by providing
less distortion as well as is known for performing better in situations with low signal-to-noise ratio.
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6.4. Computation of LFCC
The computation of LFCC is like both MFCC and IMFCC with the only difference being the linear scale
of distribution of the frequencies. The linear filter bank has been proven to work better than the mel
filter bank for feature extraction in some certain scenarios and tends to be more robust towards noise
as well as other environmental factors.

Triangular Filter Bank
" J\ |‘ ’. l\ "I A ‘|| L‘
i || ! |

08} | | ] |

o
[=2]
T
—

Amplitude
o
(4

03} | |

0.2 ‘ ‘J \1
o1 r ' |H 'l‘ | ||‘ |

. ' | y Ny | 8 0 -
0 0.5 1 15 2 25

Frequency (Hz) «10*
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6.5.Computation of GTCC
We implemented the Gammatone frequency Cepstral Coefficient method to extract the features to
be used for classification. The method involves the following:
e Define a moving frame which moves with a particular overlapping frame which would divide
the data into smaller frames for easier processing. In our case, the frame length was for 1024
samples (for 50 ms), 512 samples(for 30 ms) and 256 samples (for 15 ms) and an overlapping
frame length of about 10 ms.
o Apply the hamming window on the different frames and perform the FFT on the convolution.
e Using the Fourier transform, get the power spectrum by squaring the absolute value of the
transform.
e Derive the gammatone spectrum by convolution of the filter bank and the power spectrum
o Perform the logarithm of the gammatone spectrum
e Apply Discrete Cosine transformation on the logarithm of the gammatone spectrum
e Discard the higher order gammatone frequency coefficients.
The gammatone filter bank consists of gaussian distributed filters which have a geometrically
increasing variance about them which is pretty similar to the frequency distribution for its mel
counterpart. Gammatone tends to give a more accurate representation of human hearing than the
mel filter banks does due to the narrower bandwidth. The gammatone filters are also less sensitive to
noise and other distortions.

ERB Filter Bank
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Fig. 27: GTCC Filter bank

6.6. COMPUTATION OF CLASSIFICATION

For the classification, we would take in the 26 features each extracted from MFCC, IMFCC, LFCC and
GTCC which were all labelled either 0 for false alarms, 1 for 9 mm or 2 for 5.56 mm. Using these
features and the label we were able to use a multi label non-linear classification algorithm. This
algorithm was Support Vector Machines (SVM) with polynomial kernel of power 2. The classification
was done across 3 different frame lengths (15 ms, 30 ms, 50 ms) with 4 different feature extraction
methods (MFCC, IMFCC, LFCC, GTCC) to see which frame works best along with which method would
produce the best results. A data structure having the gunshot frame, time of the peak, max value, mel
coefficients, inverse mel coefficients, linear coefficients and gammatone coefficients was defined for
easy implementation.
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7. IMPLEMENTATION AND RESULTS

7.1.RESULTS USING SVM CLASSIFICATION
The data used for this project were audio recording of gunshots which were recorded in similar
environments for 9 mm, 5.56 mm, Hand slams, book slams, hand claps, bubble wraps and door slams.
The detection, feature extraction and classification algorithm were applied on the dataset which
meant we had the detection and feature extraction for all the data but for the Support Vector
Machines classification algorithm we would have to train the algorithm and then test with it.

A polynomial kernel of order 2 was used because it produced the best results experimentally
compared to the linear kernel or even the gaussian kernel which were both tested. The training-testing
data distribution was like 80% to 20% respectively across all classes and frame length. We had basically
only three classes for this multi-label classification problem: 0 (false alarms), 1 (9 mm) and 2 (5.56
mm) across the different implemented frame lengths for detected gunshot signals of 15, 30 and 50
ms.

Table 1: The distribution of training samples for SVM classification

Classes Frame length (ms) Number of Samples
False alarms 15 86
30 86
50 86
9 mm 15 67
30 70
50 60
5.56 mm 15 45
30 100
50 100

We would then be testing the classification algorithm across the 3 different frame lengths and 4
classification methods. We would be testing using the SVM classification method with polynomial
kernel using the following test data distribution:

Table 2: The distribution of testing samples for SVM classification

Classes Frame length (ms) Number of Samples
False alarms 15 21
30 21
50 21
9 mm 15 18
30 31
50 16
5.56 mm 15 16
30 31
50 31

For the proper interpretation of the results, there is use of some specific metrics to help better
understand what is going on with the model. These metrics are:
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TP +TN (33)
TP+ FP + TN + FN

Accuracy: ACC =

o TP
Precision: PRC = TP+ FP (34)
R ll:RLC = e

Matthews Correlation Coef ficient:
TP.TN — FP.FN (36)

McC =
J@TP +FP)(TP + FN)(TN + FP)(TN + FN)

where T stands for True, F stands for False, P stands for Positive and N stands for Negative

We ran the tests with the classification algorithm, and we have the following results in the form of
confusion matrices and tables:

Table 3: Confusion Matrices for SVM classification of 15 ms gunshot data
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Table 4: Confusion Matrices for SVM classification of 30 ms gunshot data
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Table 5: Confusion Matrices for SVM classification of 50 ms gunshot data
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Based on the confusion matrices derived above, we can clearly see some patterns with the methods
and using the proper metrics of accuracy, recall, precision, and Matthews’ Correlation coefficient we
are able to look much more closely to correctly understand the effectiveness of each feature
extraction and frame length to define which is much more useful in our case as seen in the following
tables:
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Table 6: Table of Accuracy, Precision and Recall of each test implemented for SVM classification

Classes Frame length Feature ACC (%) PRC (%) RLC (%)
(ms) Extraction
False alarms | 15 MFCC 80.70 66.67 77.78
IMFCC 82.46 71.43 78.95
LFCC 80.70 66.67 77.78
GTCC 98.24 100 95.45
30 MFCC 95.18 95.24 86.96
IMFCC 92.77 95.24 80.00
LFCC 92.77 95.24 80.00
GTCC 98.71 100 100
50 MFCC 88.06 76.19 84.21
IMFCC 89.55 80.95 85.00
LFCC 91.04 85.71 85.71
GTCC 98.53 100 95.45
9mm 15 MFCC 80.70 90.00 66.67
IMFCC 82.46 90.00 69.23
LFCC 80.70 90.00 66.67
GTCC 91.07 90.00 81.82
30 MFCC 80.72 67.74 72.41
IMFCC 79.52 67.74 75.00
LFCC 81.93 70.97 78.57
GTCC 97.44 96.00 100
50 MFCC 85.29 75.00 66.67
IMFCC 89.71 81.25 76.47
LFCC 88.24 75.00 75.00
GTCC 98.53 93.75 100
5.56mm 15 MFCC 85.96 62.50 83.33
IMFCC 85.96 62.50 83.33
LFCC 85.96 62.50 83.33
GTCC 91.22 75.00 92.31
30 MFCC 80.72 74.19 74.19
IMFCC 81.93 74.19 76.67
LFCC 81.93 74.19 76.67
GTCC 98.72 100 98.96
50 MFCC 91.18 90.32 90.32
IMFCC 91.18 90.32 90.32
LFCC 91.18 90.32 90.32
GTCC 100 100 100
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Table 7: Table of overall accuracy, precision, recall and Matthew’s correlation coefficient for the test

dataset
Frame length (ms) Feature Extraction Accuracy (%) PRC (%) RLC (%) MCC (-)
15 MFCC 73.68 73.06 75.93 0.6110
IMFCC 75.44 74.64 77.17 0.6352
LFCC 73.68 73.06 75.93 0.6110
GTCC 89.47 88.33 89.86 0.8429
30 MFCC 77.11 79.06 77.85 0.6537
IMFCC 77.11 79.06 77.22 0.6565
LFCC 78.31 80.13 78.41 0.6747
GTCC 98.70 98.67 98.96 0.9805
50 MFCC 82.35 80.50 80.40 0.7268
IMFCC 85.29 84.17 83.93 0.7714
LFCC 85.29 83.68 83.68 0.7707
GTCC 98.53 97.92 98.48 0.9774

7.2.RESULTS USING NEURAL NETWORK MODEL

The classification was also performed using Neural Networks with the intention of getting a possibly
stronger classifier. The labels remained the same with 0 being false alarms consisting of hand slams,
hand claps, door slams, bubble wrap as well as book slams, 0 for 9 mm gunshot signals and 1 for 5.56
mm gunshots. A similar test to that performed on the SVM classification model across different saved
gunshot frames (15, 30 and 50 ms) and feature extraction methods (MFCC, IMFCC, LFCC, GTCC) for
the neural networks.

A neural network of about 20 layers (an input layer, 18 hidden layers and an output layer) was trained
with the following distribution of data to train the model for proper classification. It was a simple
neural network with perceptron units. These layers were trained using the Levenberg-Marquardt
training method and the neural network training tool in MATLAB.

Table 8: The distribution of training samples for NN classification

Classes Frame length (ms) Number of Samples
False alarms 15 86
30 86
50 86
9 mm 15 67
30 67
50 67
5.56 mm 15 45
30 45
50 45

There is a difference in the number of training samples of SVM and NN. This is because while training
the SVM classifier, there were some classes that needed to be oversampled and others oversampled
for proper classification. We use a comparable dataset for both training and testing for NN.
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Now, we go through the process of optimizing and tunning the hyperparameters of the model such
that we get very good training accuracies across different tests. The trained neural network is now
tested with the 3 different frames across the 4 feature extraction algorithms implemented using the
following test data distribution:

Table 9: The distribution of testing samples for NN classification

Classes Frame length (ms) Number of Samples
False alarms 15 21
30 21
50 21
9mm 15 15
30 15
50 15
5.56 mm 15 16
30 16
50 16

Using MATLAB fitnet function for the different tests needed to be performed we can get the following
results in the form of confusion matrices and the proper metrics as seen below:

Table 10: Confusion Matrices for NN classification of 15 ms gunshot data
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Table 11: Confusion Matrices for NN classification of 30 ms gunshot data
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Table 12: Confusion Matrices for NN classification of 50 ms gunshot data
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From these confusion matrices, we can clearly see that Neural Networks tend to classify better than
Support Vector Machines for some of these tests performed but also seems to classify better certain
classes and has some interesting things to note as can be seen using the metrics defined as follows:
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Table 13: Table of Accuracy, Precision and Recall of each test implemented for NN classification

Classes Frame length Feature ACC (%) PRC (%) RLC (%)
(ms) Extraction
False alarms | 15 MFCC 71.93 59.26 76.19
IMFCC 66.67 58.33 66.67
LFCC 73.68 61.54 76.19
GTCC 100 100 100
30 MFCC 91.22 100 76.19
IMFCC 91.22 90.00 85.71
LFCC 80.70 75.00 71.43
GTCC 100 100 100
50 MFCC 94.74 90.91 95.24
IMFCC 92.98 86.96 95.24
LFCC 87.72 94.12 76.19
GTCC 100 100 100
9mm 15 MFCC 82.46 75.00 75.00
IMFCC 80.70 69.57 80.00
LFCC 78.47 70.00 70.00
GTCC 98.25 100 95.00
30 MFCC 89.47 76.00 95.00
IMFCC 87.72 80.95 85.00
LFCC 66.67 61.54 80.00
GTCC 98.25 100 95.00
50 MFCC 94.74 94.74 90.00
IMFCC 89.47 89.47 85.00
LFCC 77.19 62.07 90.00
GTCC 98.25 100 95.00
5.56mm 15 MFCC 89.47 100 62.50
IMFCC 85.96 95.24 95.24
LFCC 87.72 62.50 83.33
GTCC 98.25 94.12 100
30 MFCC 96.49 93.75 93.75
IMFCC 96.47 95.24 95.24
LFCC 82.46 90.91 62.50
GTCC 98.25 94.12 100
50 MFCC 100 100 100
IMFCC 96.49 100 93.75
LFCC 85.96 90.91 62.50
GTCC 98.25 94.12 100
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Table 14: Table of overall accuracy, precision, recall and Matthew’s correlation coefficient for the
test dataset for NN classification

Frame length (ms) Feature Extraction Accuracy (%) PRC (%) RLC (%) MCC (-)
15 MFCC 71.93 78.09 71.23 0.5803
IMFCC 70.18 75.97 69.72 0.5512
LFCC 70.18 74.15 69.56 0.5511
GTCC 98.25 98.04 98.33 0.9740
30 MFCC 87.72 89.92 88.31 0.8246
IMFCC 88.71 88.73 88.65 0.8310
LFCC 71.93 75.82 71.31 0.5810
GTCC 98.25 98.04 98.33 0.9740
50 MFCC 97.40 95.22 95.08 0.9209
IMFCC 91.23 92.14 91.33 0.8684
LFCC 77.19 82.37 76.23 0.6728
GTCC 98.25 98.04 98.33 0.9740

8. CONCLUSION

The thesis involved testing the detection and classification of gunshots across different parameters
which were the frame lengths, the feature extraction method and the classification algorithm to see
which is the most optimal case for each case. We would look at each of these parameters and decide
which worked best across different cases interrelated with the other parameters.

8.1.FRAME LENGTH

The classification algorithm was tested across different frame lengths of 15, 30 and 50 ms. The results
showed that the longest frame seemed to produce the best result with the 30 ms producing slightly
worse results than the 50 ms frame and the 15 ms frame producing the worst of them all. This might
be due to the fact that for proper classification, the feature extraction might need more signal
information from the acoustic event to properly process the acoustic event. The smallest frame might
actually be way too small because it basically only gives information about the muzzle blast and
perhaps some immediate environmental reflections which is the main basis for our detection but we
might need much more information from the event than just two parts such as the mechanical
vibrations. From the results, we can see that this frame doesn’t really classify either false alarms or
gunshots effectively because with such small amount of information as can be seen from the diagrams
they all seem pretty similar which might not help so much. The 30 ms frame works a bit better because
now we have a bit more information and from the results, we can see that it can properly distinguish
between a gunshot and a false alarm but once we get to specific gunshots, it doesn’t seem to work
well while the 50 ms frame produces the best results across feature extraction and classification
algorithms.

41



8.2. FEATURE EXTRACTION

The thesis involved building a classification system across different acoustic feature extraction
algorithms which were MFCC, IMFCC, LFCC, GTCC. The best algorithm amongst them was GTCC which
produced very good classification results almost comparable across both frame lengths and machine
learning classification algorithms. This is probably because the GTCC feature extraction algorithm
tends to have a better auditory modelling than the other methods considered as well as its robustness
to noise which we would obviously have in any recording environment and non-linear processing
which helps to produce much better results even with limited amount of information provided by the
detection frames we were using. MFCC and IMFCC were seen to produce pretty similar results with
IMFCC producing just slightly better results then MFCC in most tests especially with SVM classification
and it seemed to go the other way while performing the Neural Networks classification. This might be
because for SVM which seems to need more information for proper classification, it might help to use
also effectively filter some low frequency characteristics to get more information while for Neural
Networks it tends to work better with limited information so it can work with majorly high frequency
information such as the muzzle blast and the shockwave which might be enough to produce good
enough results and the low frequency characteristics may not be so useful in this case. The LFCC
method seemed to produce the worst result across all tests which might be due to its linearity. LFCC
shouldn’t be discounted because it seemed to produce comparable results with SVM but was really
bad when tested with Neural Networks.

8.3. CLASSIFICATION

In this thesis, two machine learning classification algorithms were implemented which were Support
Vector Machines (SVM) and Neural Networks (NN). The SVM classification algorithm was
implemented with a polynomial kernel of order 2 and the NN classification algorithm was
implemented with 20 layers (an input layer, 18 hidden layers and an output layers). The NN
classification algorithm produced much better results across all frame lengths and all feature
extraction algorithms except GTCC which had relatively similar results across almost all tests. The LFCC
method seemed to produce the lowest set of results for the NN classification algorithm which is
probably due to the linearity of the method which might not be useful in gunshot classification since
we are looking for mostly high frequency characteristics. The GTCC method produced the best results
with both MFCC and IMFCC producing similar results with MFCC slightly better. The 50 ms frame
produces the best result since we have a lot of acoustic information across large frequencies to help
get more distinguishable features than the 30 ms frame which had slightly better results than the 15
ms frame which was the worst. This means that for proper classification using NN, there was a need
to properly detect the main muzzle blast or shock wave along with some more reflections and acoustic
information about gunshot to which 50ms produces enough of but can still properly classify even with
15 ms frame or 30 ms frame. The SVM classification method seemed to not work so well with 15 ms
and 30 ms frames across MFCC, IMFCC and LFCC but produced comparable results for all GTCC tests
which is due to the properties of the feature extraction method. This is partly due to the methods
themselves but also because of the kernel used which was a polynomial kernel of the order 2 which
would be like that of a circular margin with a certain radius which is a good way to separate this non-
linearly separable data but might not effectively capture the relationship between the features and
the class especially in a small detection frame.
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