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ABSTRACT 
 

In the world today, there is an increase in the ownership of domestic firearms. This has led to a need to 
be able to detect the dangerous event of a gunshot not just in military areas but in civil areas such as 
schools, campuses, hospitals amongst others. The current means of detection of this dangerous event 
today is with the use of Closed-Circuit Television (CCTV) and drone cameras which might not be 
completely effective in some circumstances. This means that in certain situations we would need to be 
able to detect, localize and classify gunshots using an automatic acoustic sensor. This would involve a lot 
of components that would be used together for the effective detection, and classification of the gunshot. 
Once an acoustic event is detected, the algorithm starts to extract features based on Mel Frequency 
Transformation as well as some modified versions of this transformation and some multi-label 
classification algorithms to confirm if the event was indeed a gunshot fired at a specific distance that can 
be detected. This is the basic logic of what happens within the acoustic event sensor as it can receive the 
sound of the surrounding environment in real time, tries to detect an acoustic event, extract some 
features from this event and using these features classifies it as either a gunshot or not. 
The system was designed to work with recorded sound signals where we would be able to detect the 
interesting acoustic event and classify it. The system has been tested across different firearms with the 
intention of being able to detect as well as classify gunshots effectively despite environmental factors and 
some background noise. There were some other acoustic events which were considered such as hand 
claps, hand slams, door slams, bubble wraps and book slams with similar characteristics to the gunshots. 
The algorithm was defined to effectively classify the gunshots from the false alarms. 
 
Keywords: gunshot, acoustic event, sensor, real time, multi-label classification, mel frequency 
transformation, background noise, false alarms 

 
ABSTRAKT 
 
V dnešním světě dochází k nárůstu vlastnictví domácích střelných zbraní. To vedlo k potřebě být schopen 
detekovat nebezpečnou událost výstřelu nejen ve vojenských oblastech, ale i v civilních oblastech, jako 
jsou mimo jiné školy, školní areály a nemocnice. Současné prostředky detekce této nebezpečné události 
dnes využívají uzavřený televizní okruh (CCTV) a kamery z dronů, což nemusí být za určitých okolností 
zcela účinné. To znamená, že v určitých situacích bychom potřebovali být schopni detekovat, lokalizovat 
a klasifikovat výstřely pomocí automatického akustického senzoru. To by zahrnovalo mnoho komponentů, 
které by byly společně použity pro účinnou detekci a klasifikaci výstřelu. 
Jakmile je akustická událost detekována, algoritmus začne extrahovat rysy založené na Melově frekvenční 
transformaci, jakož i na některých modifikovaných verzích této transformace a některých víceznačkových 
klasifikačních algoritmech, aby potvrdil, zda událost byla skutečně výstřelem z určité vzdálenosti, který lze 
detekovat. To je základní logika toho, co se děje v rámci snímače akustických událostí, protože dokáže 
přijímat zvuky z okolního prostředí v reálném čase, snaží se detekovat akustickou událost, extrahovat z 
této události některé rysy a pomocí těchto rysů ji klasifikovat buď jako výstřel, nebo ne. 
Systém byl navržen tak, aby pracoval s nahranými zvukovými signály, u nichž bychom byli schopni 
detekovat zajímavou akustickou událost a klasifikovat ji. Systém byl testován na různých střelných 
zbraních se záměrem, aby byl schopen efektivně detekovat i klasifikovat výstřely navzdory faktorům 
prostředí a určitému šumu v pozadí. Byly zvažovány i další akustické události, jako je tlesknutí rukou, 
bouchnutí rukou, bouchnutí dveřmi, zabalení bubliny a bouchnutí knihou, které mají podobné vlastnosti 
jako výstřely. Algoritmus byl definován tak, aby účinně klasifikoval výstřely od falešných poplachů. 
 
Klíčová slova: výstřel, akustická událost, senzor, reálný čas, klasifikace více značek, melova frekvenční 
transformace, šum pozadí, falešné poplachy. 
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1. INTRODUCTION 
 

There has been a recent increase in the number of public gun attacks which has led to an increase in the 
need for some form of protection from these attacks. The current technologies in place to provide some 
form of protection is in the form of surveillance technologies such as cameras and drones as well as some 
physical protection in the form of security guards in public places such as school campuses, hospitals, and 
some residential areas. The problem with these methods is that they have a limited range to which they 
can cover and therefore still leaves the danger of sometimes not being able to properly detect if it was a 
gunshot or not, sometimes not being able to tell where the sound comes from and sometimes not being 
able to tell if it is another dangerous event occurred (other than a gunshot). Therefore, we need to think 
about a system that can help detect, extract features, and classify the acoustic event effectively. This is 
what brought about the basic logic of acoustic surveillance systems which can help to not just detect 
different acoustic events within different environments but in the case of a continuous dangerous event 
can precisely track it to its source [6]. The major advantage of the detector is that it doesn’t just detect, 
extract features, and classify gunshots but if strategically placed within an area can be used to monitor 
other acoustic events such as car crashes, dog barking, glass shattering, human screams amongst other 
dangerous events [1, 2]. 
 
We have had many of these acoustic surveillance devices implemented and used for military purposes in 
the past with the very first attempt to detect any form of acoustic event was in the First World War in 
Italy with special ear attachment. We have had some more military acoustic surveillance devices built 
such as the PILAR/PEARL and Microflown as well as some commercially used systems such as the 
ShotSpotter which involves an array of sensors strategically placed within a space such that it can easily 
locate the shooter’s original location when the gunshot was initially fired [1]. The majority of the modern 
acoustic event detectors usually use a tetrahedron array of four microphones and have the capability to 
classify the gunshot to the caliber used. This tetrahedron shape helps to calculate the azimuth, elevation, 
and range of the gunshot. Modern systems also use a bit of artificial intelligence along with some 
microcontroller to read the spectrograms of the acoustic signal [18,19]. 
 
These detectors usually use numerous methods to properly detect, extract features and classify the 
acoustic events. In the case of a gunshot, we can first easily detect this event by the shape of the sound 
signal which is produced by the muzzle blast. We have seen numerous methods in the time domain to 
properly detect the gunshot based on the basic logic of what a muzzle blast looks like such as Absolute 
value method, Median filter, Teager Energy Operator (TEO), Correlation against a template Discrete 
Wavelet Transformation (DWT), Continuous Wavelet Transformation (CWT) amongst others [7]. This 
helps us to pick out the possibly dangerous acoustic events to take note of and process for further 
investigation. We can then take these possible dangerous acoustic events and perform some feature 
extraction algorithms such as Linear Prediction Coefficients (LPC), Perceptual Linear Prediction 
Coefficients (PLPC), Zero-crossing Rate (ZcR) or Mel-frequency Cepstral Coefficients (MFCC) with these 
features used for the classification [1]. Hence, the focus will be on detection, feature extraction and 
classification of these acoustic events. 
 
These methods would be studied and some experimented upon. The results we get from working with 
these methods would be used to determine the most appropriate method to be used for Acoustic Event 
Detectors (AEDs) within both the time and frequency domains which can give us both very accurate 
results but would not require too much computational power and costs as well.  
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2. GUNSHOT ANALYSIS 
 
The first thing to investigate is the possibility of being able to detect the acoustic event which in our case 
would be a gunshot. There are quite a few principles about gunshots, bullets, gun barrels that need to be 
understood for proper detection of any gunshot. 
 

2.1.  Muzzle Blast 
The typical firearm uses a confined explosive charge to propel the bullet out of the gun barrel, this 
explosive charge causes acoustic energy coming from the center of the barrel and moves in all directions 
but mostly from the center itself. The explosive shock wave and the acoustic energy emanating from the 
barrel causes an acoustic pattern which is known as the Muzzle blast. This lasts for about 3 to 5 ms while 
propagating through air at the speed of sound (340 m/s) and interacts with numerous physical parameters 
such as temperature, humidity amongst others. There is some audio recording device with some 
proximity to the gunshot, if the gunshot is really close to the device, then the muzzle blast is usually the 
primary acoustical signal considered for proper detection. Otherwise, the recorded signal would be 
obscured and interfered by different barriers and obstacles which lead to different reflections and 
reverberations on the recorded signal. There are some handguns and rifles which produce some relatively 
loud sound for each gunshot fired. Therefore, to prevent this sound being detected by the audio recording 
device, we usually have suppressors to reduce the sound on the handguns or rifles used [1,3,4]. 
 

 
Fig 1: Recorded acoustic signal corresponding to a 7.65 mm subsonic short gun gunshot with reflection 

[1] 
 

2.2.  Shockwave 
There is a case of the bullet moving at supersonic speed which leads to the supersonic acoustical energy 
moving outward from the bullet. The acoustical effect from this is known as an acoustical shockwave 
which expands in a conical pattern as seen below: 
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Fig 2:  An acoustic wave of a supersonic bullet [3] 
 
 
The bullet has an inner angle of ϴM referred to as the Mach angle, which is dependent on the Mach 
number, M which is derived from the velocity of the bullet, v and the speed of sound, c as follows: 
 

𝑀 = 
𝑣

𝑐
                   (1) 

 
 

𝜃𝑀 = arcsin (
1

𝑀
) 

(2)  

 
We have a typical example of what the recorded shockwave would look like as shown below: 

 
Fig 3: Recorded acoustic signal corresponding to a 9 mm supersonic short gun gunshot [1] 

 
 
The acoustic shockwave has a very rapid rise to a positive over maximum pressure and then a very sudden 
drop to a negative under minimum pressure which creates a very distinct ‘N’ shape in the detected sound 
signal which is because of the shock wave propagating the nonlinear characteristics of air [1]. The period 
between the positive over maximum pressure and the negative under minimum pressure is defined as 
follows: 
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𝑇 ≈ 1.82 (
𝑑

𝑐
) (
𝑀𝑥

𝑙
)

1
4
                   

 

(3) 
 

 
𝑑 = 𝑏𝑢𝑙𝑙𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟,  
 𝑙 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑢𝑙𝑙𝑒𝑡,   
𝑐 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑, 
  𝑀 = 𝑀𝑎𝑐ℎ 𝑛𝑢𝑚𝑏𝑒𝑟, 

  𝑥 = 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑢𝑛 𝑏𝑎𝑟𝑟𝑒𝑙 𝑎𝑛𝑑 𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒  
 
The pattern looks as is shown below with the example period being a bit less than 200μs: 

 
Fig 4: Shock wave recording (“N” wave) 

 
We usually have some cases when the speed of the bullet is substantially larger than the speed of sound, 
this usually means that the Mach angle is small and the shockwave propagates nearly perpendicularly to 
the bullet’s trajectory while in the case that the speed of the bullet is just slightly larger than the speed of 
sound, the Mach angle is almost right, and the shockwave propagates nearly parallel to the bullet’s 
trajectory. Therefore, in the case that we have a supersonic bullet shot from a gun barrel, due to the fact 
of the conversion of the kinetic energy to the acoustical shockwave we can see that the Mach angle would 
increase and the speed decreases over time [3, 4]. 
Typically, the speed of sound increases with the temperature as follows: 
 

𝑐 =  𝑐0√1+
𝑇

273
                           

 

 
(4) 
 

 
𝑐 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑,   

𝑐0 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑎𝑡 0
0𝐶 = 331

𝑚

𝑠
,   

𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑙𝑠𝑖𝑢𝑠 
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2.3.  Mechanical Vibrations 
In addition to the muzzle blast and the shockwave, we can usually detect a gunshot through mechanical 
vibrations detected by the audio recording device which could include sounds from the trigger, the 
hammer mechanism, the ejection of the cartridge, positioning of new ammunition by the manual or 
automatic system by the gun. These sounds are obviously much quieter than the muzzle blast and the 
shockwave which is why they are usually detected in the case that the rifle or handgun is really close to 
the AED. 

 
 

Fig 5: The components of a gun [5] 
 
Acoustic vibration could also be picked up by the solid surfaces around the different loud acoustic sounds. 
These are usually partially absorbed and partially reflected. The speed of sound is about 5 times faster in 
soil than it is in air so there is a short period of time before we can see the surface vibrations and the 
corresponding subsequent air sound signal detected by the AED. These are reflections which are usually 
based on the path length difference.    
 

 
Fig 6: Shock wave ground reflection [3] 
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3. GUNSHOT DETECTION 
 
There are numerous methods for gunshot detection that have been used and invented over the years. 
These methods are usually implemented in some form of circuit to be used in the AED.  Based on different 
studies [7, 17, 18], there are some commonly used effective methods used that can effectively detect 
dangerous acoustic events. We would be looking at quite a few methods which are based on the different 
characteristics of gunshots explained in the previous section can easily detect the dangerous acoustic 
event. 
 

3.1. Median Filter Method 
We can now investigate the first method that is usually used for gunshot detection which is the Median 
Filter method which works on the basic principle of delay chain of taps with specific operations from the 
middle tap. The input signal is fed into a n-delay chain of taps with each having a delay of certain time 
and the input signal along with the taps are fed into a median filter whose output is subtracted from the 
output of the median filter. The number, n must be even so that we can have an odd number of inputs 
going into the median filter. For demonstration purposes, I would assume that we have 6 taps and delay 
of 1ms [7]. The basic idea of how the median filter works on is: 
 

𝑦(𝑛) =   𝑖 = 0,…,6 
𝑚𝑒𝑑𝑖𝑎𝑛 {𝑥(𝑛) − 𝑖∆𝑛} (5) 

 
∆𝑛= 𝐹𝑠. 1𝑚𝑠,     𝐹𝑠 = 48 𝑘𝐻𝑧 

 
The block diagram of the example case would look as follows: 
 

 
Fig 7: Block diagram of median filter structure [7] 

 
3.2. Teager Energy Operator  

We also sometimes apply a Teager Energy Operator on the estimated absolute input which has both 
discrete and analog forms of the operator before passing it on to the detection scheme 
 

𝑦(𝑛) =  𝑥(𝑛)2 − 𝑥(𝑛 − 1). 𝑥(𝑛 + 1) [𝑑𝑖𝑔𝑖𝑡𝑎𝑙] (6𝑎) 
 

𝑦(𝑡) =  (
𝑑𝑥

𝑑𝑡
)
2

− 𝑥(𝑡).
𝑑2𝑥

𝑑𝑡2
 [𝑎𝑛𝑎𝑙𝑜𝑔] 

 
(6𝑏) 

 
This method is said to enhance the high energy parts of the signal which helps a lot with impulsive signals.  This 
signal is then taken in and compared with the running root mean square (RMS) value 
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Fig 8: The TEO Detection Block Diagram [7] 

 
3.3. DISCRETE CORRELATION-BASED ALGORITHM 

Due to the different acoustical signals that could be gotten from the gunshot analysis, we can easily see 
that for detection purposes the use of some form of correlation might be quite useful especially when 
trying to detect the muzzle blast or the acoustic shockwave. The RMS helps to tell where the gunshot 
could be since we can tell that the higher the root mean square value the more probable a gunshot could 
be shot out at that time. This shows some form of correlative pattern event with the input signal itself so 
definitely might be able to help when trying to detect gunshots. 
 
The basic idea of the working logic of this correlative method is that we assume that since the gunshot 
would be detected with a large muzzle blast if it is close to the recording device, and it would be a small 
muzzle blast in the case that it is still a bit far from the recording device. Hence, we would have two 
recording devices both at certain distances from the gunshot and we try to compute the correlation 
between the two input signals which then actually becomes the output which is passed to go for the 
running RMS value calculation as well as the possible detection. This is an important step since the 
correlation is a signed operation and we would not be dealing with negative numbers [7]. 

 
Fig 9: Basic scheme for a discrete correlation-based detection algorithm [7] 

 
The major disadvantage of this detection algorithm is that since it is a correlative based method therefore 
it would be easily affected by background and environmental noises since we need the clearly defined 
gunshots with as much information as possible from both recording devices [7]. 
 

3.4.  Sparse Coefficient State Tracking 
We also have a simultaneous detection and classification algorithm known as Sparse Coefficient State 
Tracking (SCST). This method works by trying to separate the acoustic event from the other non-
interesting events such as environmental noise, background noise amongst others. This involves two 
processes which are signal detection to locate the presence of a transient signal of an unknown source 
under the assumption that none were present and quiescent detection to find the end point of the 
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transient signal by searching for observations where the particularly dominant source is no longer present 
under the assumption that there was one present [17].  
The times ê0 and ê1 are the estimates of the most recently observed quiescent and detection periods, 
respectively which for the quantization would be required to do some hypothesis tests. In the case, the 
data has been in quiescent period since ê0 we have: 
 

ℋ0: 𝑧𝑘 = 𝑤𝑘 , ê 0 ≤ k ≤ n 

ℋ1
(𝑝)
: 𝑧𝑘 = {

𝑤𝑘 , �̂�0 ≤ 𝑘 ≤ 𝑒1

𝑠𝑘
(𝑝)
+ 𝑤𝑘 , 𝑒1 ≤ 𝑘 ≤ 𝑛

 

 
(7𝑎) 

    

Also, when a source signal has been present since time ê 1, we perform the following tests: 
 

ℋ1
(𝑝)
: 𝑧𝑘 = 𝑠𝑘

(𝑝)
+ 𝑤𝑘 , ê 1 ≤ k ≤ n 

ℋ0
 : 𝑧𝑘 = {

𝑤𝑘 , 𝑒0 ≤ 𝑘 ≤ 𝑛

𝑠𝑘
(𝑝)
+ 𝑤𝑘 , ê 1 ≤ 𝑘 ≤ 𝑒0

 

 
(7𝑏) 

 

𝑤ℎ𝑒𝑟𝑒: ℋ0
 − 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, ℋ1

(𝑝)
− 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠,

𝑒0 − 𝑜𝑛𝑠𝑒𝑡 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑛𝑒𝑥𝑡 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡,
𝑒1 − 𝑜𝑛𝑠𝑒𝑡 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑛𝑒𝑥𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑒𝑟𝑖𝑜𝑑,

𝑠𝑘
(𝑝)
− 𝑡ℎ𝑒 𝑒𝑥𝑡𝑎𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑡𝑖𝑚𝑒 𝑒0 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ℋ0  

 

We would have to implement the hypothesis test on streaming quantized data vectors, provide a test 
statistic for signal detection and evaluate the relative likelihood of the hypothesis tests, for this we use a 
test statistic given as: 
 

𝐵𝑝(𝑛) = max{0, 𝐵𝑝(𝑛 − 1) + 𝑏𝑝(𝑛)} , 𝑛 =  �̂�0, �̂�0 + 1,…  (8) 

 
It is initiated by being equivalent to zero and updated by: 
 

𝑏𝑝(𝑛) =

{
 
 

 
 ln(

𝑓𝜆𝑝(𝑧𝑛|𝑧𝑛−1)

𝑓𝜆𝑜(𝑧𝑛)
) , 𝐵𝑝(𝑛 − 1) > 0

ln(
𝑓𝜆𝑝(𝑧𝑛)

𝑓𝜆𝑜(𝑧𝑛)
) , 𝐵𝑝(𝑛 − 1) = 0 

 

 
 
(9) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡 𝜆 ∈ {𝜆𝑜, 𝜆𝑝} 

 
Since the source is unknown, we use the following test: 

𝐵𝑝(𝑛) ≥ 𝜂𝑝
𝑚𝑎𝑥  (10) 

𝜂 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑙𝑎𝑏𝑒𝑙 
 
 
The moment a transient signal is detected, the quiescent detection uses the following test statistic: 
 

𝑇𝑝(𝑛) = max{0, 𝑇𝑝(𝑛 − 1) + 𝑡𝑝(𝑛)} , 𝑛 =  �̂�1, �̂�1 + 1,… (11) 

 
It is also initialized by being equivalent to zero and updated by: 
 

𝑡𝑝(𝑛) =  ln (
𝑓𝜆𝑜(𝑧𝑛)

𝑓𝜆𝑝(𝑧𝑛|𝑧𝑛−1)
) 

 
(12) 

 
The absence of any source is defined by: 
 

𝑇𝑝∗ ≥ 𝛾 (13) 
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𝑤ℎ𝑒𝑟𝑒  𝑝∗ =  𝐵𝑝(𝑛)𝑝
arg𝑚𝑎𝑥

 

𝛾 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑝∗ 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 
 

 

 
 

 
Fig 10: SCST block diagram [17]. 

 
3.5. Geometric Wideband Capon Method 

There is an algorithm which helps with the detection by computing the Angle of Arrival (AoA) of the source 
wavefront using recorded data from different microphones in every 1-s snapshot. This method is known 
as the Geometric Wideband Capon method. These snapshots are partitioned into K nonoverlapping blocks 
of 1024 samples. We apply Fast Fourier Transform (FFT) on each block. We use these blocks to compute 
the sample spatial covariance matrix as follows: 
 

𝑅𝑥𝑥(𝜔𝑗) =
1

𝐾
∑𝑥𝑘(𝜔𝑗)

𝐾

𝑘=1

𝑥𝑘
𝐻(𝜔𝑗) 

 
(14) 

 
𝑤ℎ𝑒𝑟𝑒  

𝑥𝑘(𝜔𝑗) −  𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑏𝑙𝑜𝑐𝑘 𝑎𝑡 𝑛𝑎𝑟𝑟𝑜𝑤𝑏𝑎𝑛𝑑  

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝜔𝑗  

 

This is used to generate the geometrically averaged wideband Capon power spectrum: 
 

𝑄𝐺(𝜃) =  ∏
1

𝑣𝐻(𝜔𝑗 , 𝜃)𝑅𝑥𝑥
−1(𝜔𝑗)𝑣(𝜔𝑗 , 𝜃)

𝐽

𝑗=1

 
 
(15) 

 

𝑤ℎ𝑒𝑟𝑒 𝑣(𝜔𝑗 , 𝜃) 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑛𝑑  

𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑛𝑔𝑙𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒 𝑎𝑟𝑟𝑎𝑦 
 

The steering vector assumes the microphone inputs are ordered as: East, South, Center, West and North. 
The aggregated power spectrum is searched over the azimuth angle and the angles that maximize this 
function are the AoA angles of the detected sources of that 1-s snapshot [17]. 

 
Fig. 11: Overview of wideband capon method [17]. 

 
There have been numerous other attempts to effectively detect acoustic events with optimal capacity 
such as with the use of Neural Networks [18] and Bayesian Networks [19]. We have also had the possibility 
of detecting the gunshots using Raspberry Pi with a deep learning Convolutional Neural Network 
classification algorithm [20]. There are other interesting methods implemented and experimented with 
over the years such as the use an array of microphones to locate the acoustic, even source and muzzle 
blast, and shock wave patterns to distinguish the gunshot using the Spatial Likelihood Function [21]. 
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There have been quite several experimental detection algorithms which have been implemented over the 
years when it comes to Acoustic Events Detection with numerous advancements even with using ISR 
applications [22] as well as having devices which can detect devices using infrared flash of the muzzle 
blast and the percussion property of being able to detect from different audio sources [24]. The underlying 
principles all remain the same of just being able to detect the muzzle blast property or the shockwave 
property as described in the previous section. In this project, a customized detection algorithm based on 
some of the concepts from a median filter (use of RMS, Maximum threshold level) and the acoustical 
properties of a gunshot was implemented. This was due to the computational capabilities, ease of 
implementation and accuracy of the detection algorithm in relation to the others. 
 
 

4. FEATURE EXTRACTION 

 
Now that we know some dangerous acoustic events detection algorithms, we would now be trying to look 
at the different ways we can correctly classify the event into either gunshot or not in our case. The 
detection algorithm, if positive, could be a false positive which we would have to find some way to 
properly distinguish these false alarms from the roper gunshots 
 
The classification involves both feature extraction and the use of some default classification algorithm. 
There were quite a few methods to be considered for the feature extraction as well as the classification 
algorithm.  We have the MFCC (Mel-frequency Cepstral Coefficient), IMFCC (Inverse Mel-frequency 
Cepstral Coefficient), LFCC (Linear Frequency Cepstral Coefficient) and GTCC (Gammatone Cepstral 
Coefficient) which would be considered for the feature extraction. We would be looking at both SVM 
(Support Vector Machines) and Neural networks as options for the effective classification of each acoustic 
event detected.  
 

4.1.  Mel Frequency Cepstral Coefficient (MFCC) 
The feature extraction algorithms are all based on the concept of a cepstrum. A cepstrum is the 
information of the rate of change in spectral bands. We usually get the periodic signals as peaks while 
working with them in the frequency domain by converting the input signal in the time domain via Fourier 
series. A non-linear rectification function (either log or power function) is applied to the peaks and then 
we take the spectrum of these peaks with a cosine function which is basically a Discrete Cosine Function 
(DCF) which results in a cepstral.[8] 
 
Pitch is a very important concept in acoustic signals and is usually measured with frequency. Due to the 
fact that the human ear doesn’t perceive pitch linearly, we would therefore have to be able to match the 
perceived frequency to the human ear frequency and therefore we would need to have a scale which 
could help with this matching. This scale is called the Mel Scale. The Mel scale works on the principle 
based on the simple fact that we know that humans can perceive the change in lower frequencies than 
those of higher frequencies. The Mel scale works such that we have a mapping function as follows: 
 

𝑀(𝑓) = 1125 log (1 + 
𝑓

700
) 

 
(16) 

 
The mapping function is usually derived experimentally with the following parameters: 

𝑀(𝑓)  −     𝑇ℎ𝑒 𝑚𝑒𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
𝑓  −    𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

This Mel frequency is a psychoacoustical non-linear scale which better represent the changes in the 
different pitches of the human ears. Based on this scale, we can then have Mel filter banks which have a 
particular number of filters (between 10 and 30) which once converted are summed up together to give 
the Mel filter bank.  
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Fig 12: A Mel-filter bank containing 10 filters. This filter bank starts at 0 Hz and ends at 8000 Hz [9]. 

 
This basically defines the basic skeleton of the MFCC methodology which involves the following: 

• Breaking down the input signal to overlapping time frames 

• Performing some form of Fourier Transformation to these time frames (typically DFT) 

• Convolution with the filter bank to produce filtered signal 

• Application of some non-linear rectification function to the filtered signal (typically log10 or 
power function) 

• Application of some form of Fourier Transformation to the rectified signal (typically DCT) which 
gives us the coefficients 

 
 
 
 

Fig 13: Flowchart of Mel-Frequency Cepstral Coefficient Feature Extraction. 
 

4.2. Inverse Mel Frequency Cepstral Coefficient and Linear Frequency Cepstral Coefficient 
We also have IMFCC and LFCC which work with the exact same methodology as shown in the flowchart 
above but the only difference being the filter banks used within the method. The Mel Filter banks as seen 
in Fig. 12 tend to have a cluster of filter banks within the lower frequencies but tend to be more spaced 
towards the higher frequencies while IMFCC tends to have the opposite with a lot of space for the filters 
within the lower frequencies and tends to get more clustered towards the higher frequencies. LFCC tends 
to have even spacing between all the filters within the filter banks. 
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Fig. 14: The different filter banks for MFCC (top), LFCC (middle) and IMFCC (bottom).[10] 

 
We also work with the concept of Gammatone Cepstral Coefficients which are based on the Mel filters 
but instead of triangular filters we use the gammatone function which is based on the human auditory 
response. The gammatone function is a linear function that is proportional to the filtering done by the ear 
which is basically a product of the gamma distribution and a sinusoidal tone. The gammatone function is 
given as follows: 
 

𝑔(𝑡) = 𝑎𝑡𝑛−1𝑒−2𝜋𝑏𝑡 cos(2𝜋𝑓𝑡 +  𝜑) (17) 
𝑎 − 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒,   𝑏 − 𝑓𝑖𝑙𝑡𝑒𝑟 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑖𝑛 𝐻𝑧, 𝑓 − 𝑐𝑒𝑛𝑡𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑖𝑛 𝐻𝑧,

𝜑 − 𝑝ℎ𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠,   𝑡 − 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
 

4.3. Gammatone Frequency Cepstral Coefficient (GTCC) 
The gammatone filter bank is typically used to simulate the basilar membrane’s movement with respect 
to time within the cochlear with the output of each filter corresponding to the frequency response of the 
basilar membrane within a single place. The filter bank is normally defined in such a way that the filter 
center frequencies are distributed across frequency in proportion to their bandwidth, known as the ERB 
scale. The ERB scale is approximately logarithmic, on which the filter center frequencies are equally 
spaced. [11]  

 
Fig 15: Gammatone filter bank [11] 
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From the above description, we can tell that there are numerous possibilities for the feature extraction 
procedure to be used for gunshot extraction purposes. The ones we would be considering have a similar 
skeletal principle and methodology which are applied across all four of them. The summary of the basic 
processes used within each possible Frequency Cepstral Coefficient extraction method can be described 
in the figure below, Fig 16. 

                                                          
 

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16: The skeleton of the feature extraction algorithms
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5. GUNSHOT CLASSIFICATION 

Now that we have been able to categorically define the feature extraction methods which are to be 
considered in this case, we would start working with a way to take these extracted features and apply 
them into some form of classification model which could help us identify whether the acoustic event 
detected is a gunshot or not. We would need a very high level of accuracy for all intents and purposes. 
Therefore, we would be considering machine learning classification algorithms which should help 
produce very accurate results. 
 
The easiest way to look at our problem would be with a two-class approach to the classification. We 
would have a certain number of features that we would have gotten from the feature extraction which 
would stand as our input data of a certain number of dimensions. Therefore, we would have a form 
of separating plane which can help with the classification along the different axis. There are quite a 
few possible methods to consider. 
 

5.1. Support Vector Machines 
One of the methods that we would consider being a two-class problem would be the Support Vector 
Machines (SVM). SVM works on the same principle as perceptron which is the ability to place a linear 
separating plane between two different classes of data but also tries to maximize the margin distance 
between the separating hyperplanes as well.  
 

𝑞(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑥 + 𝑏) (18) 
 
The basic concepts of linear classification are defined as follows: 

 
Fig 17: The basic concepts of linear classification (Perceptron) [25] 

 
For a two-class linear classification we work with the feature vectors as follows: 
 

𝑤𝑥 + 𝑏 > 0 𝑤ℎ𝑒𝑛 𝑘 = 1 
𝑤𝑥 + 𝑏 < 0 𝑤ℎ𝑒𝑛 𝑘 = 2 

(19) 

 
This helps define the basic separating plane which is derived from numerous feature vectors which 
comprises of [1 , x] with the class known to help train the model to correctly classify data to either 
class.  
 
SVM, for a two-class problem, is a supervised learning method which doesn’t just define the separating 
plane but also maximizes the margin between the two hyperplanes as follows: 
 

𝑤𝑥 + 𝑏 = 1  
𝑤𝑥 + 𝑏 = −1 

(20) 
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This brings about the Maximum margin problem. 
 

 
Fig 18: Image describing the maximum margin separation principle [14] 

 
The feature vectors which have a distance from the separating plane which is about half of the margin 
are referred to as support vectors which are usually the closest points to the plane and help define 
the margin. 
 

𝑚 = 2 𝑚𝑖𝑛𝑥∈𝑇𝑑(𝑥) (21) 
 

𝑤ℎ𝑒𝑟𝑒 𝑚 = 𝑚𝑎𝑟𝑔𝑖𝑛, 𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑓𝑟𝑜𝑚 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑒,
𝑥 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟,   𝑇 = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 

 
We then try to maximize the margin by defining the signed distance of the margin from each point x 
which has a defined class, y (which is either 1 or -1) of the decision boundary with gradients (w, b) as 
follows: 
 

𝑑(𝑥, 𝑦) =  
𝑦(𝑤𝑥 + 𝑏)

‖𝑤‖
       𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑦(𝑤𝑥 + 𝑏) > 0 

(22) 

 
This basically leads us to the optimization task of minimizing the maximum double the distance of the 
farthest point from the margin given the basic condition that its class is 1 expressed as: 
 

(𝑤∗, 𝑏∗) =        2𝑑(𝑥, 𝑦)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦(𝑤𝑥 + 𝑏) > 0,∀(𝑥, 𝑦) ∈ 𝑇(𝑥,𝑦)∈𝑇
𝑚𝑖𝑛

𝑤,𝑏
𝑎𝑟𝑔𝑚𝑎𝑥

 (23) 

 
This leads to the margin having a value of: 
 

𝑚∗ =        2𝑑(𝑥, 𝑦) =   
2

‖𝑤‖𝑤,𝑏
𝑚𝑎𝑥  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦(𝑤𝑥 + 𝑏) > 0, ∀(𝑥, 𝑦) ∈ 𝑇(𝑥,𝑦)∈𝑇

𝑚𝑖𝑛
𝑤,𝑏
𝑚𝑎𝑥  

(24) 

 
We usually find it easier to minimize than to maximize due to the quadratic programming problem, so 
we write the expression as: 
 

(𝑤∗, 𝑏∗) =     
1

2
 ‖𝑤‖2 𝑤,𝑏

𝑎𝑟𝑔𝑚𝑖𝑛
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦(𝑤𝑥 + 𝑏) > 0, ∀(𝑥, 𝑦) ∈ 𝑇 

(25) 
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Fig 19:  Image showing the different types of margins that can be gotten from SVM [13] 

 
From the expression above, we can see that we are minimizing the gradients as well as also making 
sure it solves a constraint. This leads to a primal problem which we usually solve using the following 
expression: 
 

(𝑤∗, 𝑏∗)  =    {
1

2
‖𝑤‖2  +  ∑ 𝑓(𝑥, 𝑦, 𝑤, 𝑏)

(𝑥,𝑦)∈𝑇

} ,𝑤ℎ𝑒𝑟𝑒(𝑤,𝑏)
𝑎𝑟𝑔𝑚𝑖𝑛

 

 
(26) 

 

𝑓(𝑥, 𝑦, 𝑤, 𝑏) =  {
0  𝑖𝑓 𝑦(𝑤𝑥 + 𝑏) ≥ 1
∞,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
We usually must work with Non-linear SVMs which work means the separating plane would not be a 
line. We approach this problem by taking the original dimension and mapping it to some higher-
dimensional feature space where the training set becomes separable using some mapping function. 
This brings about the concept of the Kernel which relies on the inner dot product between the vectors 
across different dimensions. Each datapoint is mapped into high-dimensional space via some 
transformation: 
 

Φ: x → φ(x) (27) 
 
the inner product becomes: 
 

𝐾(𝑥𝑖 , 𝑥𝑗) =  𝜑(𝑥𝑖). 𝜑(𝑥𝑗) (28) 

 
with K being the kernel function. 
 
We have numerous possible kernels with the most popular ones being: 
 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑘𝑒𝑟𝑛𝑒𝑙 − 𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑥𝑖. 𝑥𝑗 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑝 − 𝐾(𝑥𝑖, 𝑥𝑗) =  (𝑥𝑖. 𝑥𝑗)
𝑝 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 −  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒
−‖(𝑥𝑖−𝑥𝑗‖

2
2𝜎2⁄  

𝑇𝑤𝑜 𝑙𝑎𝑦𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 −  𝐾(𝑥𝑖, 𝑥𝑗) =  tanh (𝛼𝑥𝑖. 𝑥𝑗 + 𝛽) 

 
5.2.  Neural Networks 

Another classification method that we can consider would be Neural Networks. These work by trying 
to replicate the basic function of a neuron in the brain which is being able to identify the different 
patterns and relationships between the data given input features and the output. This is usually done 
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by using some concepts in Statistics and Computer Science to work with, train, build and effectively 
test a neural network.  

 
Fig 20: The basic skeleton of a neural network [15] 

 
Neural networks typically comprise of layers of interconnected nodes which work together to define 
patterns within the data. There is usually an input layer, one or more hidden layers and an output 
layer which work with each layer having nodes with inputs of weighted sums of some nodes from the 
previous layer being passed on to the next layer [15]. 
 
Each node is basically a perceptron model which works with the concept of having a two-class output, 
y with classes, 1 and -1 given the input, x as follows: 
 

𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑥 + 𝑏) (29) 
  

Therefore, we have an input layer which consists of all the input features of the data which would be 
trained with certain weights to be passed on to the next layer, hidden layers which take inputs from 
the previous hidden layer or input layer which will also be trained with those weights as well and an 
output layer which take in inputs from the last hidden layer and trains the weights given the final 
output.  
 
An affine non-linear function is usually applied to the output at each node before passing it forward 
to the next layer. Some of these functions include: 
 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 −  𝜎(𝑧) = 1 1 + 𝑒−𝑧⁄  
tan 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 −  𝜎(𝑧) =  𝑒𝑧 − 𝑒−𝑧 𝑒𝑧 + 𝑒−𝑧⁄  

𝑅𝑒𝐿𝑈 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 −  𝜎(𝑧) = max (0, 𝑧) 
𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 −  𝜎(𝑧) = max(0, 𝑧) + min(0, 𝑠𝑧) (0 < 𝑠 < 1) 

 
Usually, when working with multi label classification, we use the SoftMax function right after the 
output layer to get a one-hot vector. 

[𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)]𝑘 = 
exp 𝑧𝑘

∑ exp 𝑧𝑙
𝐾
𝑙=1

 (30) 

 
The networks work with feed forwarding which as described above is just passing the input and taking 
weighted sums of the current layer as inputs into the next layer till we get some output. There is also 
the possibility of working backwards by trying to reduce the cost function by finding the weights given 
some predictive analysis of both inputs and outputs.[16]  
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6. COMPUTATION 
 

Now, I begin to describe the parts of the thesis that was implemented in practice. The entire practical 
part of the thesis was done in MATLAB. There were quite a few things implemented in the detection, 
feature extraction and classification algorithms. We begin to describe our approach to the gunshot 
detection and classification problem based on the theoretical concepts studied as well as testing of 
these concepts as well. 
 

6.1.  Computation of Gunshot Detection 
I decided to work with the basic concepts of the acoustical properties of the gunshots such as muzzle 
blast, shock waves and supersonic waves as well as taking some inspiration from the median filter 
method. Based on the above concepts, I was able to categorically define some proper conditions for 
which we should know that a gunshot should have on a time scale. Most of the files were audio files 
stored in the .wav format so it was easy to import them into MATLAB and get the sampling frequency, 
fs for which would help with the signal processing. We used a continuous moving frame of different 
frame lengths (15 ms, 30 ms, 50 ms) of the entire gunshot with the important acoustic information 
required. This was done to see if it is possible to get a much better result with more acoustic 
information available over time or if the main muzzle blast (or shockwave) of variable length between 
3ms and 6ms with a bit more information was just what was needed for proper classification. For each 
frame length we had some exact format to it with: 

• 50 ms (10 ms before muzzle blast and 40 ms after muzzle blast) 

• 30 ms (5 ms before muzzle blast with 25 ms after muzzle blast) 

• 15 ms (3 ms before muzzle blast with 12 ms after muzzle blast) 
The conditions were as follows: 

• The maximum peak within the frame must be greater than the maximum threshold level 
(which is based on our knowledge of the environment which the audio was recorded). 

• The maximum peak within the frame must be within the first 3 ms of the entire frame which 
corresponds to the muzzle blast or shock wave. 

• The maximum peak within the frame must be the maximum within the entire frame of about 
10ms before the start of the current frame. This was done to prevent a case of interruption of 
any gunshot with another gunshot from either farther away or even the reflections from the 
surroundings. 

• The root mean square (RMS) of the frame after the muzzle blast must be greater than the root 
mean square of the entire audio recording. This is to make sure we are not recording a gunshot 
so far away from the recording device that we cannot use the information for proper 
classification. 
 

𝑥𝑟𝑚𝑠 = 
𝑥0

√2
 (31) 

 
𝑤ℎ𝑒𝑟𝑒 𝑥𝑟𝑚𝑠 − 𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒, 𝑥0 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

 

• The z-score value of the maximum peak of the frame must be the greater than the maximum 
threshold level defined for the environment. The definition of z-score is as follows: 
 

𝑍 =
𝑥 − 𝜇

𝜎
 (32) 

𝑤ℎ𝑒𝑟𝑒 𝑍 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒, 
 𝑥 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 

 𝜇 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒, 
 𝜎 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 
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• The z-score value of the maximum peak of the frame must be the maximum z-score value of 
double the length of the frame. This is to make sure that we have enough time to read as 
much information from the acoustic signal without any interference from another gunshot 
and reflection. It also helps to make sure we are not measuring some one-off spiking signal 
but an actual high-pitched sound of a gunshot. 

The algorithm was as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Using this algorithm, I was able to detect some gunshots of different calibers (9mm, 5.56mm) as well 
as properly detect some false alarms (bubble wrap, book slam, door slam, hand slam, hand clap). 
 
 
  

  
no 

 
 
 

yes 

 
 
 
yes 

 
 
 

Fig. 21: The logic diagram of the detection algorithm used 
 

The detection algorithm was applied across different firearms and false alarms which led to some 
frames being picked for such characteristics as seen below: 

Reading the necessary information and the y signal of the audio recordings 
For each frame in y: 
 If Max(frame) > Maximum Threshold Level 
  If Max(frame) == Max(frame(1:3ms)) 
   If Max(frame) > Max(frame(-10ms:0)) 
    If rms(frame(4ms: frame length)) > rms(y)  
     If z-score(frame) > Maximum Threshold Level 
      If z-score(frame) > z-score(y(start of frame:2*frame length)) 
                -(Save gunshot information) 

-(Move the frame by about 2 times the frame length)
  

        ……... 
Else: 
 Move the frame by about 1ms  
 
 
 
 

Frames of 
specific lengths 

Moving frames 

Is the amplitude 
larger than the 
maximum threshold 
level? 

Next frame 

Is the amplitude 
within the first 
3ms? 

yes 

 Is the RMS of the signal 
after the muzzle blast 
greater than the rms of 
the entire signal? 

Is the z-score of the 
frame greater than 
the Maximum 
Threshold level? 

Is the z-score of the 
frame greater than the 
z-score of the frame 
and an additional frame 
length? 

Save the 
frame 

yes yes 

yes 

no 

no 

no 

no 
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Fig 22: Plots showing detected gunshots of certain calibers (9 mm and 5.56 mm) 

 
From the plots above, it is very clear how similar the two signals from the two calibers are on the time-
based signal. We can also clearly see that the false alarms have similar properties to the gunshots 
which could pose a problem. Hence the need for proper feature extraction. 

 

 

  
Fig. 23: Samples of False alarms  
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6.2. Computation of MFCC 
We implemented the Mel frequency Cepstral Coefficient method to extract the features to be used 
for classification. The method involves the following: 

• Define a moving frame which moves with a particular overlapping frame which would divide 
the data into smaller frames for easier processing. In our case, the frame length was for 1024 
samples (for 50 ms), 512 samples (for 30 ms) and 256 samples (for 15 ms) along with an 
overlapping frame length of about 10 ms. 

• Apply the hamming window on the different frames and perform the FFT on the convolution. 

• Using the Fourier transform, get the power spectrum by squaring the absolute value of the 
transform. 

• Derive the mel spectrum by convolution of the filter bank and the power spectrum 

• Perform the logarithm of the mel spectrum 

• Apply Discrete Cosine transformation on the logarithm of the mel spectrum 

• Discard the higher order mel frequency coefficients. 
 
The mel frequency filter bank was constructed in this case to have the same amplitude and have a 
geometrically progressive frequency distribution. We used the triangular filter bank because we are 
trying to approximate the non-linear response of the human auditory system and map the frequencies 
to the mel scale. It also helps because it is relatively easy to implement since we would need lesser 
number of coefficients and therefore less computation power. 

 
Fig. 24: MFCC Filter bank 

 

6.3. Computation of IMFCC 
The steps for running the computation of the MFCC except for the filter bank stage. The inverse mel 
frequency filter bank basically works by reversing the mel scale. This means we would be more 
interested in the higher frequencies and be extracting more features from that range. We would also 
be using triangular filter banks for comparable results as well as similar frequency ranges used for the 
feature extraction. The inverse mel filter bank tends to work better than mel filter bank by providing 
less distortion as well as is known for performing better in situations with low signal-to-noise ratio. 
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Fig. 25: IMFCC Filter bank 

 

6.4. Computation of LFCC 
The computation of LFCC is like both MFCC and IMFCC with the only difference being the linear scale 
of distribution of the frequencies. The linear filter bank has been proven to work better than the mel 
filter bank for feature extraction in some certain scenarios and tends to be more robust towards noise 
as well as other environmental factors. 

 
Fig 26: LFCC Filter bank 
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6.5. Computation of GTCC 
We implemented the Gammatone frequency Cepstral Coefficient method to extract the features to 
be used for classification. The method involves the following: 

• Define a moving frame which moves with a particular overlapping frame which would divide 
the data into smaller frames for easier processing. In our case, the frame length was for 1024 
samples (for 50 ms), 512 samples(for 30 ms) and 256 samples (for 15 ms) and an overlapping 
frame length of about 10 ms. 

• Apply the hamming window on the different frames and perform the FFT on the convolution. 

• Using the Fourier transform, get the power spectrum by squaring the absolute value of the 
transform. 

• Derive the gammatone spectrum by convolution of the filter bank and the power spectrum 

• Perform the logarithm of the gammatone spectrum 

• Apply Discrete Cosine transformation on the logarithm of the gammatone spectrum 

• Discard the higher order gammatone frequency coefficients. 
The gammatone filter bank consists of gaussian distributed filters which have a geometrically 
increasing variance about them which is pretty similar to the frequency distribution for its mel 
counterpart. Gammatone tends to give a more accurate representation of human hearing than the 
mel filter banks does due to the narrower bandwidth. The gammatone filters are also less sensitive to 
noise and other distortions. 

  
Fig. 27: GTCC Filter bank 

 

6.6. COMPUTATION OF CLASSIFICATION 
For the classification, we would take in the 26 features each extracted from MFCC, IMFCC, LFCC and 
GTCC which were all labelled either 0 for false alarms, 1 for 9 mm or 2 for 5.56 mm. Using these 
features and the label we were able to use a multi label non-linear classification algorithm. This 
algorithm was Support Vector Machines (SVM) with polynomial kernel of power 2. The classification 
was done across 3 different frame lengths (15 ms, 30 ms, 50 ms) with 4 different feature extraction 
methods (MFCC, IMFCC, LFCC, GTCC) to see which frame works best along with which method would 
produce the best results. A data structure having the gunshot frame, time of the peak, max value, mel 
coefficients, inverse mel coefficients, linear coefficients and gammatone coefficients was defined for 
easy implementation. 
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7. IMPLEMENTATION AND RESULTS 
 

7.1. RESULTS USING SVM CLASSIFICATION  
The data used for this project were audio recording of gunshots which were recorded in similar 
environments for 9 mm, 5.56 mm, Hand slams, book slams, hand claps, bubble wraps and door slams. 
The detection, feature extraction and classification algorithm were applied on the dataset which 
meant we had the detection and feature extraction for all the data but for the Support Vector 
Machines classification algorithm we would have to train the algorithm and then test with it.  
 
A polynomial kernel of order 2 was used because it produced the best results experimentally 
compared to the linear kernel or even the gaussian kernel which were both tested. The training-testing 
data distribution was like 80% to 20% respectively across all classes and frame length. We had basically 
only three classes for this multi-label classification problem: 0 (false alarms), 1 (9 mm) and 2 (5.56 
mm) across the different implemented frame lengths for detected gunshot signals of 15, 30 and 50 
ms. 
 

Table 1: The distribution of training samples for SVM classification 

Classes Frame length (ms) Number of Samples 

False alarms 15 86 

30 86 

50 86 

9 mm 15 67 

30 70 

50 60 

5.56 mm 15 45 

30 100 

50 100 

 
We would then be testing the classification algorithm across the 3 different frame lengths and 4 
classification methods. We would be testing using the SVM classification method with polynomial 
kernel using the following test data distribution: 
 

Table 2: The distribution of testing samples for SVM classification 

Classes Frame length (ms) Number of Samples 

False alarms 15 21 

30 21 

50 21 

9 mm 15 18 

30 31 

50 16 

5.56 mm 15 16 

30 31 

50 31 

 
For the proper interpretation of the results, there is use of some specific metrics to help better 
understand what is going on with the model. These metrics are: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦: 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(33) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 𝑃𝑅𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(34) 

 

𝑅𝑒𝑐𝑎𝑙𝑙: 𝑅𝐿𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 
(35) 

 
𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡: 

𝑀𝐶𝐶 =  
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
(36) 

 
𝑤ℎ𝑒𝑟𝑒 𝑇 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑇𝑟𝑢𝑒, 𝐹 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝐹𝑎𝑙𝑠𝑒, 𝑃 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑁 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 
We ran the tests with the classification algorithm, and we have the following results in the form of 
confusion matrices and tables: 
 

Table 3: Confusion Matrices for SVM classification of 15 ms gunshot data 
 

MFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 14 2 2 

1 5 18 4 

2 2 0 10 

 

LFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 14 2 2 

1 5 18 4 

2 2 0 10 

 
 

 
 
 
 
 
 
 
 
 

 

IMFCC 

ACTUAL 
P

R
ED

IC
TE

D
 

 0 1 2 

0 15 2 2 

1 4 18 4 

2 2 0 10 

GTCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 21 1 0 

1 0 18 4 

2 0 1 12 
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Table 4: Confusion Matrices for SVM classification of 30 ms gunshot data 
 

MFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 20 3 0 

1 0 21 8 

2 1 7 23 

 

LFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 21 3 2 

1 0 22 6 

2 1 6 23 

 
 

Table 5: Confusion Matrices for SVM classification of 50 ms gunshot data 
 

MFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 16 2 1 

1 4 12 2 

2 1 2 28 

 

LFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 18 2 1 

1 2 12 2 

2 1 2 28 

 
 
Based on the confusion matrices derived above, we can clearly see some patterns with the methods 
and using the proper metrics of accuracy, recall, precision, and Matthews’ Correlation coefficient we 
are able to look much more closely to correctly understand the effectiveness of each feature 
extraction and frame length to define which is much more useful in our case as seen in the following 
tables: 
 
 

IMFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 20 4 1 

1 0 21 7 

2 1 6 23 

GTCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 21 1 0 

1 0 24 0 

2 0 1 31 

IMFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 17 2 1 

1 2 13 2 

2 2 1 28 

GTCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 21 1 0 

1 0 15 0 

2 0 0 31 
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Table 6: Table of Accuracy, Precision and Recall of each test implemented for SVM classification 
 

Classes Frame length 
(ms) 

Feature 
Extraction 

ACC (%) PRC (%) RLC (%) 

False alarms 15 MFCC 80.70 66.67 77.78 

IMFCC 82.46 71.43 78.95 

LFCC 80.70 66.67 77.78 

GTCC 98.24 100 95.45 

30 MFCC 95.18 95.24 86.96 

IMFCC 92.77 95.24 80.00 

LFCC 92.77 95.24 80.00 

GTCC 98.71 100 100 

50 MFCC 88.06 76.19 84.21 

IMFCC 89.55 80.95 85.00 

LFCC 91.04 85.71 85.71 

GTCC 98.53 100 95.45 

9mm 15 MFCC 80.70 90.00 66.67 

IMFCC 82.46 90.00 69.23 

LFCC 80.70 90.00 66.67 

GTCC 91.07 90.00 81.82 

30 MFCC 80.72 67.74 72.41 

IMFCC 79.52 67.74 75.00 

LFCC 81.93 70.97 78.57 

GTCC 97.44 96.00 100 

50 MFCC 85.29 75.00 66.67 

IMFCC 89.71 81.25 76.47 

LFCC 88.24 75.00 75.00 

GTCC 98.53 93.75 100 

5.56mm 15 MFCC 85.96 62.50 83.33 

IMFCC 85.96 62.50 83.33 

LFCC 85.96 62.50 83.33 

GTCC 91.22 75.00 92.31 

30 MFCC 80.72 74.19 74.19 

IMFCC 81.93 74.19 76.67 

LFCC 81.93 74.19 76.67 

GTCC 98.72 100 98.96 

50 MFCC 91.18 90.32 90.32 

IMFCC 91.18 90.32 90.32 

LFCC 91.18 90.32 90.32 

GTCC 100 100 100 
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Table 7: Table of overall accuracy, precision, recall and Matthew’s correlation coefficient for the test 
dataset 

 

Frame length (ms) Feature Extraction Accuracy (%) PRC (%) RLC (%) MCC (-) 

15 MFCC 73.68 73.06 75.93 0.6110 

IMFCC 75.44 74.64 77.17 0.6352 

LFCC 73.68 73.06 75.93 0.6110 

GTCC 89.47 88.33 89.86 0.8429 

30 MFCC 77.11 79.06 77.85 0.6537 

IMFCC 77.11 79.06 77.22 0.6565 

LFCC 78.31 80.13 78.41 0.6747 

GTCC 98.70 98.67 98.96 0.9805 

50 MFCC 82.35 80.50 80.40 0.7268 

IMFCC 85.29 84.17 83.93 0.7714 

LFCC 85.29 83.68 83.68 0.7707 

GTCC 98.53 97.92 98.48 0.9774 

 
7.2. RESULTS USING NEURAL NETWORK MODEL 

The classification was also performed using Neural Networks with the intention of getting a possibly 
stronger classifier. The labels remained the same with 0 being false alarms consisting of hand slams, 
hand claps, door slams, bubble wrap as well as book slams, 0 for 9 mm gunshot signals and 1 for 5.56 
mm gunshots. A similar test to that performed on the SVM classification model across different saved 
gunshot frames (15, 30 and 50 ms) and feature extraction methods (MFCC, IMFCC, LFCC, GTCC) for 
the neural networks.  
A neural network of about 20 layers (an input layer, 18 hidden layers and an output layer) was trained 
with the following distribution of data to train the model for proper classification. It was a simple 
neural network with perceptron units. These layers were trained using the Levenberg-Marquardt 
training method and the neural network training tool in MATLAB. 
 

Table 8: The distribution of training samples for NN classification 
 

Classes Frame length (ms) Number of Samples 

False alarms 15 86 

30 86 

50 86 

9 mm 15 67 

30 67 

50 67 

5.56 mm 15 45 

30 45 

50 45 

 
There is a difference in the number of training samples of SVM and NN. This is because while training 
the SVM classifier, there were some classes that needed to be oversampled and others oversampled 
for proper classification. We use a comparable dataset for both training and testing for NN. 
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Now, we go through the process of optimizing and tunning the hyperparameters of the model such 
that we get very good training accuracies across different tests. The trained neural network is now 
tested with the 3 different frames across the 4 feature extraction algorithms implemented using the 
following test data distribution: 
 

Table 9: The distribution of testing samples for NN classification 
 

Classes Frame length (ms) Number of Samples 

False alarms 15 21 

30 21 

50 21 

9 mm 15 15 

30 15 

50 15 

5.56 mm 15 16 

30 16 

50 16 

 
Using MATLAB fitnet function for the different tests needed to be performed we can get the following 
results in the form of confusion matrices and the proper metrics as seen below: 
 

Table 10: Confusion Matrices for NN classification of 15 ms gunshot data 
 

MFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 16 5 6 

1 5 15 0 

2 0 0 10 

 

LFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 16 6 4 

1 4 14 2 

2 1 0 10 

 
 

 
 
 
 
 
 

IMFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 14 4 6 

1 7 16 0 

2 2 0 10 

GTCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 21 0 0 

1 0 19 0 

2 0 1 16 
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Table 11: Confusion Matrices for NN classification of 30 ms gunshot data 

 

MFCC 

ACTUAL 

P
R

ED
IC

TE
D

 
 0 1 2 

0 16 0 0 

1 5 19 1 

2 0 1 15 

 

LFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 15 3 2 

1 6 16 4 

2 0 6 10 

 
 

Table 12: Confusion Matrices for NN classification of 50 ms gunshot data 
 

MFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 20 2 0 

1 1 18 0 

2 0 0 16 

 

LFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 16 1 0 

1 5 18 6 

2 1 1 10 

 
From these confusion matrices, we can clearly see that Neural Networks tend to classify better than 
Support Vector Machines for some of these tests performed but also seems to classify better certain 
classes and has some interesting things to note as can be seen using the metrics defined as follows: 
 
 
 
 

IMFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 18 2 0 

1 3 17 1 

2 0 1 20 

GTCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 21 0 0 

1 0 19 0 

2 0 1 16 

IMFCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 20 3 0 

1 1 17 1 

2 0 1 15 

GTCC 

ACTUAL 

P
R

ED
IC

TE
D

 

 0 1 2 

0 21 0 0 

1 0 19 0 

2 0 1 16 
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Table 13: Table of Accuracy, Precision and Recall of each test implemented for NN classification 

 

Classes Frame length 
(ms) 

Feature 
Extraction 

ACC (%) PRC (%) RLC (%) 

False alarms 15 MFCC 71.93 59.26 76.19 

IMFCC 66.67 58.33 66.67 

LFCC 73.68 61.54 76.19 

GTCC 100 100 100 

30 MFCC 91.22 100 76.19 

IMFCC 91.22 90.00 85.71 

LFCC 80.70 75.00 71.43 

GTCC 100 100 100 

50 MFCC 94.74 90.91 95.24 

IMFCC 92.98 86.96 95.24 

LFCC 87.72 94.12 76.19 

GTCC 100 100 100 

9mm 15 MFCC 82.46 75.00 75.00 

IMFCC 80.70 69.57 80.00 

LFCC 78.47 70.00 70.00 

GTCC 98.25 100 95.00 

30 MFCC 89.47 76.00 95.00 

IMFCC 87.72 80.95 85.00 

LFCC 66.67 61.54 80.00 

GTCC 98.25 100 95.00 

50 MFCC 94.74 94.74 90.00 

IMFCC 89.47 89.47 85.00 

LFCC 77.19 62.07 90.00 

GTCC 98.25 100 95.00 

5.56mm 15 MFCC 89.47 100 62.50 

IMFCC 85.96 95.24 95.24 

LFCC 87.72 62.50 83.33 

GTCC 98.25 94.12 100 

30 MFCC 96.49 93.75 93.75 

IMFCC 96.47 95.24 95.24 

LFCC 82.46 90.91 62.50 

GTCC 98.25 94.12 100 

50 MFCC 100 100 100 

IMFCC 96.49 100 93.75 

LFCC 85.96 90.91 62.50 

GTCC 98.25 94.12 100 
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Table 14: Table of overall accuracy, precision, recall and Matthew’s correlation coefficient for the 
test dataset for NN classification 

 

Frame length (ms) Feature Extraction Accuracy (%) PRC (%) RLC (%) MCC (-) 

15 MFCC 71.93 78.09 71.23 0.5803 

IMFCC 70.18 75.97 69.72 0.5512 

LFCC 70.18 74.15 69.56 0.5511 

GTCC 98.25 98.04 98.33 0.9740 

30 MFCC 87.72 89.92 88.31 0.8246 

IMFCC 88.71 88.73 88.65 0.8310 

LFCC 71.93 75.82 71.31 0.5810 

GTCC 98.25 98.04 98.33 0.9740 

50 MFCC 97.40 95.22 95.08 0.9209 

IMFCC 91.23 92.14 91.33 0.8684 

LFCC 77.19 82.37 76.23 0.6728 

GTCC 98.25 98.04 98.33 0.9740 

 
 
 
 

8. CONCLUSION 
 

The thesis involved testing the detection and classification of gunshots across different parameters 
which were the frame lengths, the feature extraction method and the classification algorithm to see 
which is the most optimal case for each case. We would look at each of these parameters and decide 
which worked best across different cases interrelated with the other parameters.  

 
8.1. FRAME LENGTH 

The classification algorithm was tested across different frame lengths of 15, 30 and 50 ms. The results 
showed that the longest frame seemed to produce the best result with the 30 ms producing slightly 
worse results than the 50 ms frame and the 15 ms frame producing the worst of them all. This might 
be due to the fact that for proper classification, the feature extraction might need more signal 
information from the acoustic event to properly process the acoustic event. The smallest frame might 
actually be way too small because it basically only gives information about the muzzle blast and 
perhaps some immediate environmental reflections which is the main basis for our detection but we 
might need much more information from the event than just two parts such as the mechanical 
vibrations. From the results, we can see that this frame doesn’t really classify either false alarms or 
gunshots effectively because with such small amount of information as can be seen from the diagrams 
they all seem pretty similar which might not help so much. The 30 ms frame works a bit better because 
now we have a bit more information and from the results, we can see that it can properly distinguish 
between a gunshot and a false alarm but once we get to specific gunshots, it doesn’t seem to work 
well while the 50 ms frame produces the best results across feature extraction and classification 
algorithms. 
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8.2. FEATURE EXTRACTION 
The thesis involved building a classification system across different acoustic feature extraction 
algorithms which were MFCC, IMFCC, LFCC, GTCC. The best algorithm amongst them was GTCC which 
produced very good classification results almost comparable across both frame lengths and machine 
learning classification algorithms. This is probably because the GTCC feature extraction algorithm 
tends to have a better auditory modelling than the other methods considered as well as its robustness 
to noise which we would obviously have in any recording environment and non-linear processing 
which helps to produce much better results even with limited amount of information provided by the 
detection frames we were using. MFCC and IMFCC were seen to produce pretty similar results with 
IMFCC producing just slightly better results then MFCC in most tests especially with SVM classification 
and it seemed to go the other way while performing the Neural Networks classification. This might be 
because for SVM which seems to need more information for proper classification, it might help to use 
also effectively filter some low frequency characteristics to get more information while for Neural 
Networks it tends to work better with limited information so it can work with majorly high frequency 
information such as the muzzle blast and the shockwave which might be enough to produce good 
enough results and the low frequency characteristics may not be so useful in this case. The LFCC 
method seemed to produce the worst result across all tests which might be due to its linearity. LFCC 
shouldn’t be discounted because it seemed to produce comparable results with SVM but was really 
bad when tested with Neural Networks. 
 

8.3. CLASSIFICATION 
In this thesis, two machine learning classification algorithms were implemented which were Support 
Vector Machines (SVM) and Neural Networks (NN). The SVM classification algorithm was 
implemented with a polynomial kernel of order 2 and the NN classification algorithm was 
implemented with 20 layers (an input layer, 18 hidden layers and an output layers). The NN 
classification algorithm produced much better results across all frame lengths and all feature 
extraction algorithms except GTCC which had relatively similar results across almost all tests. The LFCC 
method seemed to produce the lowest set of results for the NN classification algorithm which is 
probably due to the linearity of the method which might not be useful in gunshot classification since 
we are looking for mostly high frequency characteristics. The GTCC method produced the best results 
with both MFCC and IMFCC producing similar results with MFCC slightly better. The 50 ms frame 
produces the best result since we have a lot of acoustic information across large frequencies to help 
get more distinguishable features than the 30 ms frame which had slightly better results than the 15 
ms frame which was the worst. This means that for proper classification using NN, there was a need 
to properly detect the main muzzle blast or shock wave along with some more reflections and acoustic 
information about gunshot to which 50ms produces enough of but can still properly classify even with 
15 ms frame or 30 ms frame. The SVM classification method seemed to not work so well with 15 ms 
and 30 ms frames across MFCC, IMFCC and LFCC but produced comparable results for all GTCC tests 
which is due to the properties of the feature extraction method. This is partly due to the methods 
themselves but also because of the kernel used which was a polynomial kernel of the order 2 which 
would be like that of a circular margin with a certain radius which is a good way to separate this non-
linearly separable data but might not effectively capture the relationship between the features and 
the class especially in a small detection frame. 
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